Skip to main content

Ego Noise Reduction for Hose-Shaped Rescue Robot Combining Independent Low-Rank Matrix Analysis and Multichannel Noise Cancellation

  • Conference paper
  • First Online:
Book cover Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Abstract

In this paper, we present an ego noise reduction method for a hose-shaped rescue robot, developed for search and rescue operations in large-scale disasters. It is used to search for victims in disaster sites by capturing their voices with its microphone array. However, ego noises are mixed with voices, and it is difficult to differentiate them from a call for help from a disaster victim. To solve this problem, we here propose a two-step noise reduction method involving the following: (1) the estimation of both speech and ego noise signals from observed multichannel signals by multichannel nonnegative matrix factorization (NMF) with the rank-1 spatial constraint, and (2) the application of multichannel noise cancellation to the estimated speech signal using reference signals. Our evaluations show that this approach is effective for suppressing ego noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Impulsive Paradigm Change through Disruptive Technologies Program (ImPACT). http://www.jst.go.jp/impact/program07.html

  2. Namari, H., Wakana, K., Ishikura, M., Konyo, M., Tadokoro, S.: Tube-type active scope camera with high mobility and practical functionality. In: Proceedings of IEEE/RSJ IROS, pp. 3679–3686 (2012)

    Google Scholar 

  3. Deleforge, A., Kellerman, W.: Phase-optimized K-SVD for signal extraction from underdetermined multichannel sparse mixtures. In: Proceedings of IEEE ICASSP, pp. 355–359 (2015)

    Google Scholar 

  4. Barfuss, H., Kellerman, W.: Improving blind source separation performance by adaptive array geometries for humanoid robots. In: Proceedings of HSCMA (2014)

    Google Scholar 

  5. Barfuss, H., Kellerman, W.: An adaptive microphone array topology for target signal extraction with humanoid robots. In: Proceedings of IWAENC, pp. 16–20 (2014)

    Google Scholar 

  6. Aichner, R., Zourub, M., Buchner, H., Kellerman, W.: Post-processing for convolutive blind source separation. In: Proceedings of ICASSP (2006)

    Google Scholar 

  7. Mae, N., Kitamura, D., Ishimura, M., Yamada, T., Makino, S.: Ego noise reduction for hose-shaped rescue robot combining independent low-rank matrix analysis and noise cancellation. In: Proceedings of APSIPA (2016, to be published)

    Google Scholar 

  8. Kitamura, D., Ono, N., Sawada, H., Kameoka, H., Saruwatari, H.: Efficient multichannel nonnegative matrix factorization exploiting rank-1 spatial model. In: Proceedings of ICASSP, pp. 276–280 (2015)

    Google Scholar 

  9. Kitamura, D., Ono, N., Sawada, H., Kameoka, H., Saruwatari, H.: Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization. IEEE/ACM Trans. Audio Speech Lang. Process. 24(9), 1626–1641 (2016)

    Article  Google Scholar 

  10. Kim, T., Eltoft, T., Lee, T.-W.: Independent vector analysis: an extension of ICA to multivariate components. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 165–172. Springer, Heidelberg (2006). doi:10.1007/11679363_21

    Chapter  Google Scholar 

  11. Hiroe, A.: Solution of permutation problem in frequency domain ICA, using multivariate probability density functions. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 601–608. Springer, Heidelberg (2006). doi:10.1007/11679363_75

    Chapter  Google Scholar 

  12. Kim, T., Attias, H.T., Lee, S.-Y., Lee, T.-W.: Blind source separation exploiting higher-order frequency dependencies. IEEE Trans. Speech Audio Process. 15(1), 70–79 (2007)

    Article  Google Scholar 

  13. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  14. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Proc. NIPS 13, 556–562 (2001)

    Google Scholar 

  15. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, New York (2009)

    Book  Google Scholar 

  16. Ozerov, A., Févotte, C.: Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. ASLP 18(3), 550–563 (2010)

    Google Scholar 

  17. Kameoka, H., Yoshioka, T., Hamamura, M., Roux, J., Kashino, K.: Statistical model of speech signals based on composite autoregressive system with application to blind source separation. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 245–253. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15995-4_31

    Chapter  Google Scholar 

  18. Sawada, H., Kameoka, H., Araki, S., Ueda, N.: Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. ASLP 21(5), 971–982 (2013)

    Google Scholar 

  19. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41(14), 1–24 (2001)

    Article  MATH  Google Scholar 

  20. Ishimura, M., Makino, S., Yamada, T., Ono, N., Saruwatari, H.: Noise reduction using independent vector analysis and noise cancellation for a hose-shaped rescue robot. In: Proceedings of IWAENC (2016)

    Google Scholar 

  21. Hänsler, E., Schmidt, G.: Acoustic Echo and Noise Control: A Practical Approach. Wiley, New York (2004)

    Book  Google Scholar 

  22. Vincent, E., Gribonval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE Trans. ASLP 14, 1462–1469 (2006)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Science and Technology Agency and the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT) designed by the Council for Science, Technology and Innovation, and partly supported by SECOM Science and Technology Foundation. We would also like to express our gratitude to Prof. Hiroshi Okuno and Mr. Yoshiaki Bando for providing experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narumi Mae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mae, N. et al. (2017). Ego Noise Reduction for Hose-Shaped Rescue Robot Combining Independent Low-Rank Matrix Analysis and Multichannel Noise Cancellation. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics