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Abstract. Source separation evaluation is typically a top-down process, starting 
with perceptual measures which capture fitness-for-purpose and followed by at-
tempts to find physical (objective) measures that are predictive of the perceptual 
measures. In this paper, we take a contrasting bottom-up approach. We begin 
with the physical measures provided by the Blind Source Separation Evaluation 
Toolkit (BSS Eval) and we then look for corresponding perceptual correlates. 
This approach is known as psychophysics and has the distinct advantage of 
leading to interpretable, psychophysical models. We obtained perceptual simi-
larity judgments from listeners in two experiments featuring vocal sources with-
in musical mixtures. In the first experiment, listeners compared the overall qual-
ity of vocal signals estimated from musical mixtures using a range of competing 
source separation methods. In a loudness experiment, listeners compared the 
loudness balance of the competing musical accompaniment and vocal. Our pre-
liminary results provide provisional validation of the psychophysical approach. 
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1 Introduction 
Audio source separation methods typically attempt to recover or estimate signals, 
known as ‘sources’, that have been mixed. The success of this “unmixing” process is 
evaluated both objectively, using BSS Eval [1], and subjectively by asking listeners to 
rate the perceived quality using methods such as MUSHRA [2,3]. Unfortunately, 
observed correlation between the BSS Eval measures and the subjective evaluations 
has proved sufficiently poor [4-9] that the community has rejected the BSS Eval 
measures as invalid.  

It is difficult to relate physical measures (such as BSS Eval) to subjective evalua-
tions of audio quality, as the latter is affected by a wide range of perceptual attributes, 
dependencies on suitability for purpose, as well as individual opinion and preference. 
This approach could be considered as being top-down, where we begin with perceptu-
al (subjective) ratings that we find are important, and then seek physical (objective) 
measures which are correlated. The downside of the top-down approach is that we 
may not find such physical measures because we do not fully understand the process 
of audition. 



An alternative method would be to approach the problem bottom-up, where we in-
stead begin with physical measures which are descriptive of the audio signals and we 
look for perceptual measures which correlate to the physical measures. This approach 
is known as psychophysics and has the advantage of being able to produce interpreta-
ble, psychophysical models relating the known physical measures to corresponding 
perceptual measures. This paper examines whether bottom-up psychophysical evalua-
tion principles can be applied in source separation research to obtain perceptual 
measures with better correlation to the objective measures. 
 
A. Psychophysics 
The main principle of psychophysics is that there exist psychological correlates of 
physical parameters [10,11]. A psychological correlate is a measurable behaviour, 
relating to body or mind, that is a (usually monotonic) function of some controllable, 
physical parameter of the stimulus. These psychophysical correlates are typically 
identified or substantiated using perceptual data. Perhaps the most well established 
example of a psychophysical correlate is loudness [12]. Loudness theory defines the 
loudness of a given sound as the auditory perceptual correlate of acoustic intensity. 
Hence, for a given signal, variations in intensity correspond to perceptual variations in 
loudness. Subjective judgments of loudness are elicited from listeners for stimuli with 
varying degrees of intensity. Although acoustic intensity may be considered as an 
absolute physical measurement (e.g., sound pressure level), psychophysical para-
digms for the study of loudness typically involve relative judgments relating the loud-
ness of one sound to that of another sound [13]. The most common methods for 
studying loudness involve comparisons of pairs of signals. The most direct method for 
loudness comparison is known as magnitude ratio estimation [13], where listeners 
provide a numerical ratio estimate that captures the loudness ratio between a given 
pair of stimuli.  
 
B. Application of Psychophysics to Source Separation  
A psychophysical approach could be applied to source separation. When undertaking 
objective measurements of an arbitrary mixture of known signals, the separated signal 
from a given separation algorithm (the signal estimate) may be compared to the 
known separate signals for evaluation. Any difference between the signal estimate 
and the corresponding known signal is often described as ‘distortion’ [1]. By subtract-
ing the known signal from the signal estimate, a difference (i.e. distortion) signal may 
be obtained. The ratio of the known signal energy to the energy of this difference 
signal is known as the signal-to-distortion ratio (SDR) [1]. The difference signal is 
decomposed into two parts: an interference signal, considered to be due to the influ-
ence of other sources on the target source estimate, and an artefacts signal, considered 
to be that part of the estimate that is not due to either the target signal or any of the 
other signals. The ratio of the known target signal energy to an estimate of the energy 
remaining from the interfering signals is known as the source-to-interference ratio 
(SIR), and the ratio of the known target signal to the artefacts signal energy is known 
as the source-to-artefacts ratio (SAR). If SAR and SIR are employed as the physical 
measures, a magnitude ratio estimation methodology of subjective attributes related to 



these factors could result in a close correlation between the subjective and objective 
metrics. As for the loudness example above, the magnitude ratio estimation method-
ology would involve comparative judgements, in this case judgements of the similari-
ty of certain aspects of the signals.  

The subjective attribute selected to compare to SAR was the similarity of the vo-
cal; this is a judgement of the effect of artefacts on the perceived similarity of the 
target signal. This can be analysed such that judgements that are similar to the known 
target signal are positioned at one end of the scale, and judgements that are dissimilar 
to the known target signal are positioned towards the opposite end of the scale. The 
subjective attribute selected to compare to SIR was the loudness-balance-similarity; 
this is a judgement of the similarity of the perceived loudness balance between the 
target and interferer signals. This can be analysed such that judgements that are simi-
lar to the known target signal are positioned at one end of the scale, and judgements 
that are dissimilar to the known target signal, or similar to the unseparated mixture 
signal, are positioned at the towards the opposite end of the scale. 
 
C. Overview 
In this paper, we introduce a psychophysical evaluation method based on magnitude 
ratio estimation corresponding as closely as possible to SAR and SIR. In the follow-
ing section we describe two preliminary listening tests featuring real-world audio 
examples obtained from a range of state-of-the-art audio source separation methods 
(see [14]). Next, we describe the resulting perceptual data and correlations with the 
physical measures to evaluate the match between the perceptual and physical data. 
Then, we analyse the data from the point of view of model comparison in order to 
evaluate whether the subjective judgements produce meaningful results. Finally, we 
provide some brief discussion. 

2 Method 
The prevailing MUSHRA perceptual evaluation methods [2-9] are focused on obtain-
ing interpretable perceptual measures and, hence, any attempt at modelling is a sec-
ondary consideration. In contrast, the sole aim of our psychophysical study is to estab-
lish perceptual correlates of the physical parameters. Focussing on separation of vo-
cals from musical mixtures, we conducted two listening tests using stimuli generated 
using competing methods for source separation. Listeners were asked to locate each 
of the respective versions of each given vocal signal on a perceptual line such that the 
placement on the line captured the perceptual similarity relationships between the 
respective sounds. In the first experiment, as a perceptual correlate of the physical 
measure SAR, we evaluated similarity of the vocal. In the second experiment, to cap-
ture the loudness balance (between the vocal and accompaniments) as a perceptual 
correlate of the physical measure SIR, we evaluated loudness-balance-similarity. 
Critically, in both cases the stimuli placed on each perceptual line included the mix-
ture and original (pre-mixture) vocal signal. 

We consider five competing source separation methods [14] featuring deep neural 
networks (DNN). One of the five methods comprises a baseline DNN model (M 
_baseline) and the remaining four methods comprise multi-stage architectures which 



extend the baseline DNN model with various parameterisations (M_DNN_1-3) and/or 
non-negative matrix factorisation (M_NMF) – see [14]. Critically, the DNN architec-
tures in [14] are designed as augmentations of the baseline DNN architecture which 
attempt to improve the method. 

In an experiment where multiple stimuli were compared directly, six listeners 
were asked to provide judgements on the perceptual similarity between 30-second 
musical excerpts. The excerpts, chosen as representative of typical musical mixtures 
featuring typical vocal and accompaniment, were taken from the mixes of 10 songs 
selected from the test set of the ‘MUS’ task of the SiSEC challenge [15]. The mixture 
for each song was a summation of the available stems, where the stems comprised 
vocals, bass, drums and other (accompaniment). Listeners reported normal hearing 
and were naïve to the purpose of the test. Most listeners had some prior experience of 
listening tests and all were familiar with music listening, audio production and/or 
recording technologies. 

Stimuli. We consider the separation of the vocal (stem) signal from the accompa-
niment signal within a mixture. All mixtures were collapsed (summed) to mono (sin-
gle channel) and the various, competing source separation methods were each inde-
pendently applied to each of the 10 mixtures. The voice separation output of each of 
the five source separation methods was used. In addition, the mixture and original 
vocal stem signals were also used, providing 7 alternate stimuli for each song. From 
the point of view of the source separation methods employed, we note that the mix-
tures separated were not used in training the deep neural networks (i.e., we are con-
cerned with evaluation of the models on the test set). Closed (isolating) headphones 
were used to present the stimuli. Presentation was monaural and diotic (same in both 
ears). Listeners were instructed to set the volume control on the amplifier for a com-
fortable listening level at the beginning of the test and did not adjust it further during 
the test. Listeners were unpaid volunteers. 

Procedure. In the case of the first experiment, similarity judgements about the vo-
cal sources were solicited. Listeners were instructed to compare only the vocal com-
ponent of the mixture in this experiment. Even in the case of the full mixture, this 
means that the listeners had to isolate their perception of the vocal component for 
comparison. The listeners declared that they were able to do this to their satisfaction. 
In the second experiment, similarity judgements were solicited comparing the loud-
ness balance (see [16]) between the vocal and accompaniment in each presented stim-
ulus. 

Listeners were presented with an interface featuring seven play buttons and seven 
respective sliders (on a computer screen). Each play button and slider represented 
either one of the five voice separation outputs from the respective models or the mix-
ture or the original vocal source. Using each individual ‘play’ button, listeners were 
able to listen to each of the respective alternate versions of the vocal at will and could 
repeat an unlimited number of times. Listeners arranged the vertical placement of the 
seven sliders to capture the similarity relationships between the various stimuli, such 
that sliders for very similar stimuli were placed closely (on the vertical axis) and slid-
ers for dissimilar stimuli were placed with greater distance. Note that the absolute 
placements of the sliders is not informative. Listeners were briefed to maximise their 
use of the scale for each song but were not briefed to attempt to make consistent 
judgements across songs. 



Listeners evaluated the stimuli in sessions of 10 songs. There was no explicit time 
constraint on the sessions. Most sessions were completed in under 25 minutes. The 
presentation order (both the order of the songs and the order of stimuli for each song) 
was randomised so that each slider corresponded to a different stimulus each time. 
Sliders were reset before each new song. When the listener had completed the ar-
rangement of the sliders for a given song a ‘next’ button was pushed for the next song. 

Analysis I: Correlation. Listeners did not make comparisons between songs but 
only within each song, hence we must first test correlations within the context of each 
song, before summarising the correlation over the 10 songs. For the perceptual data 
resulting from each listening test, the slider placements corresponding to the original 
vocal were subtracted (by way of reference) from the other placements on a song-by-
song basis. The slider placement data for the original vocal were subsequently dis-
carded. For each of the stimuli used in the experiments (except the original vocal 
signals which are not suitable for analysis), the corresponding physical measures 
(SAR/SIR) were computed using the toolbox associated with [1]. 

For the data of each listening test, a separate correlation analysis was conducted 
on a song-by-song basis. The medians of the subjective data were calculated for each 
song and each stimulus (therefore averaging across the results of the listeners). This 
resulted in 6 perceptual measures per song, per listening test. Next, the corresponding 
SAR and SIR values for each song (6 measures per song) were used to compute linear 
(Pearson) correlation coefficients with the respective perceptual data for that song. 
The correlation was calculated between the data from the first (vocal similarity) ex-
periment and SAR, and the data from the second (loudness balance similarity) exper-
iment and SIR. This provided, for each listening test, a set of 10 (song-wise) correla-
tion coefficients. To summarise (over songs) each of the two respective distributions 
we take the median correlation coefficient. 

Next, in order to provide a measure of statistical significance for the respective 
median correlation coefficients, permutation tests [17] were conducted. The above 
procedure for computing the song-wise distribution of correlation coefficients was 
repeated 10,000 times. Each of these 10,000 times, prior to the correlation computa-
tion, the order of the data were randomly shuffled. The median of this distribution 
was then taken and, over the 10,000 replications, an empirical null distribution (of 
null across-song medians) was accumulated. Finally, the number of median correla-
tion coefficients that was greater than or equal to (and with the same sign as) the actu-
al median correlation coefficient was counted and the resulting count divided by 
10,000. This provides an empirical estimate of the probability of the respective 
across-song median correlation coefficient occurring by chance (a P value). 

Analysis II: Model comparison. In contrast to the correlation analysis described 
above, in this analysis we are interested in overall performance comparisons of the 
models in terms of perception. Across-song means were computed for each listener 
and collated. The resulting data were analysed using non-parametric statistical meth-
ods (see [18]). Initially, a main-effects analysis was conducted for the data of each 
test using a Friedman test. Next, post-hoc analyses were conducted on a pair-wise 
basis in order to determine which pairs of models showed evidence of being signifi-
cantly different. The post-hoc pairwise analyses can be considered ‘planned tests’ and 
so contrasts were limited (in advance) to comparisons between the baseline model and 
the respective, competing multi-stage models. We do not provide correction for mul-



tiple comparisons, primarily because of the limited number of listeners involved and 
because of the minimal number of planned contrasts.   
 

Fig. 1. Perceptual similarity versus SAR. Listeners organized sliders representing the seven 
respective stimuli along perceptual lines which depict the perceived similarity of the vocal 
component. These scatter plots show, on a song-by-song basis, across-listener median percep-
tual slider placement as a function of SAR. Dashed grey lines indicate linear regression lines 
shown for illustration only. Note: axis scale and range vary. 

 

Fig. 2. Loudness balance similarity versus SIR. Listeners organized sliders representing the 
seven respective stimuli along perceptual lines which depict the perceived similarity of the 
loudness balance between the vocal and the accompaniment. These scatter plots show, on a 
song-by-song basis, across-listener median perceptual slider placement as a function of SIR. 
Dashed grey lines indicate linear regression lines shown for illustration only. Note: axis scale 
and range vary. 

3 Results: Analysis I – Psychophysical Correlation 
In the correlation analysis, we are not concerned with the question of which model is 
best, but rather we are concerned with the question of whether the physical measures 
correlate with the perceptual measures. For the perceptual data of the first listening 
test (similarity), Fig. 1 plots, on a song-by-song basis, the across-listener medians as a 
function of the respective SAR measures. Note that, for illustrative purposes only, in 
these plots we limited the upper SAR (for the original mixtures) to 10 dB (because 
these numbers would otherwise be at the limits of precision). Fig. 2 plots the equiva-



lent for the perceptual data of the second (loudness balance similarity) listening test. 
Linear regression lines are shown in grey for illustration. Qualitatively, the scatter 
plots of Fig. 1 show some evidence of monotonic trends but are somewhat noisy and 
appear to be dominated by the extremes of slider placement. The scatter plots of Fig. 
2 show more obvious monotonic trends. 

 

 

 

 

 

Fig. 3. Song-wise correlation coefficients. For 
each listening test, linear (Pearson) correlation 
coefficients were computed, on a song-by-song 
basis, for the listener-wise medians of the per-
ceptual data with the respective BSS Eval 
measures. The above box-plots show median (in 
red), inter-quartile range (box) and 1.5x IQR 
respectively (whiskers). Outliers are given as red 
crosses. Asterisks (above box-plots) denote 
significant median correlation coefficients 
(P<0.01, Permutation test, n=10,000). 

Figure 3 shows box-plots capturing the respective correlation coefficient distribu-
tions (each over the 10 songs) relating to the plots of Figs. 1 and 2. The median 
across-song correlations are both around 0.91 and both are significant (P<0.01, Per-
mutation test, n=10,000). In other words, our measures correlate well, on a song-by-
song basis, with the physical measures, suggesting that our psychophysical paradigm 
is reliable. 

4 Results: Analysis II – Comparison of Separation Methods 
Figure 4a shows box-plots of the data resulting from the first experiment (vocal 

similarity). The original vocal and the vocal-within-mixture are deemed to be very 
similar within the context of the experiment. There is a significant main effect among 
the different models (P < 0.05, Friedman Test, χ2 = 10.93, df = 4). In the pairwise 
post-hoc analysis, we find no evidence that the results for multi-stage model 
M_DNN1 or the M_NMF model are significantly different from the baseline (P > 
0.05, paired Wilcox tests, two tailed). However, multi-stage models M_DNN2-3 are 
significantly less similar to the original vocal than the baseline (P < 0.05, paired Wil-
cox tests, two tailed). 

Figure 4b shows the respective box-plots of the data resulting from the second 
(loudness balance) experiment. In this case, the mixture and original voice are not 
located together (by the listeners) but are located at opposite ends of the perceptual 
space. This indicates that the listeners took these two as bounding the space; the mix-



ture providing the minimum ratio of vocal-to-accompaniment loudness and the origi-
nal vocal providing the maximum ratio of vocal-to-accompaniment loudness (i.e., the 
ratio was theoretically infinite). Between the two extremes, there is a reasonable 
spread over the models. There is a significant main effect among the different models 
(P < 0.05, Friedman Test, χ2 = 19.07, df = 4). In post-hoc analysis, the baseline model 
is the worst performer and is not significantly different from the M_NMF model (P > 
0.05, paired Wilcox Test, two tailed). All the multi-stage models suppress the accom-
paniment significantly better than the baseline model (P < 0.05, paired Wilcox test, 
two-tailed). We did not perform contrasts between the respective multi-stage models 
because we are chiefly interested in whether the multi-stage models offer an im-
provement over the baseline model. 

Combining the evidence from the two respective listening tests, with respect to the 
performance of the baseline model, for multi-stage model M_DNN1 there is a signifi-
cant perceptual improvement in accompaniment suppression and no associated evi-
dence of a corresponding drop in vocal sound quality. However, for the alternative 
multi-stage models (M_DNN2, M_DNN3, M_NMF) although there is evidence of 
significantly better suppression than baseline, there is also evidence of corresponding-
ly significantly worse distortion than baseline. Therefore, in these cases, it would 
appear that there has been a trade-off [19], with improved accompaniment suppres-
sion coming at the expense of vocal sound quality.  

5 Conclusion and Discussion 
In this paper, we have described and demonstrated a psychophysical evaluation meth-
od for audio source separation. Our method has been demonstrated in the context of 
vocal separation from musical mixtures. In contrast to the prevailing MUSHRA para-
digms [4-9], our perceptual results are highly correlated with the physical measures 
SAR and SIR. Thus, our results tend to suggest that the previously reported failures of 
the physical measures to correlate with perceptual data [4-9] may be the inherent re-
sult of methods which do not hold to the necessary psychophysical principles. In addi-
tion, our psychophysical paradigm paves the way for the development of psychophys-
ical models (e.g., see [19]) more suitable to act as bridge between the physical 
measures and the quality-of-experience measures which are more informed by the 
practical uses of and motivations for source separation. Future work is necessary to 
determine whether these preliminary results are generalizable to stimuli with a wider 
distribution of physical measurement values and a larger cohort of listeners. 

We have also demonstrated that the psychophysical evaluation approach is suita-
ble for comparison of competing audio source separation methods. For one of the 
multi-stage deep neural network separation methods, the combined results of the two 
experiments described here capture improved accompaniment suppression without 
any evidence of a corresponding penalty in the associated vocal quality. By contrast, 
the alternative multi-stage models appear to achieve their suppression at the cost of a 
trade-off [19] of improved suppression for added distortion. Future work should in-
clude generalisation of the psychophysical paradigm to a larger range of stimuli and a 
larger cohort of listeners. In addition, some means to obtain uniformly distributed 
physical measures would improve the interpretability of the results. 



   

Fig. 4. Model Comparison: Perceived Similarity. Listeners organized sliders representing the 
seven respective stimuli along perceptual lines which depict the perceived similarity. a plots 
the data of experiment 1, capturing the similarity of the vocal component of the respective 
stimuli. b plots the respective data of experiment 2, capturing the loudness balance similarity. 
Ref_Voc refers to the original vocal signal, Ref_Mix refers to the mixture, M_baseline refers to 
the baseline DNN, M_DNN1-3 refer to the respective multi-stage DNNs and M_NMF refers to 
the NMF model. Medians are shown in red. Boxes describe inter-quartile range and ‘whiskers’ 
indicate 95% confidence intervals. Bars with asterisks denote significant differences (P < 0.05, 
paired Wilcox Test). All other contrasts are not significant (P > 0.05, paired Wilcox Test). 
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