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Abstract. Source separation evaluation is typicallpp-down process, starting
with perceptual measures which capture fitnesplopose and followed by at-
tempts to find physical (objective) measures thatpredictive of the perceptual
measures. In this paper, we take a contradiottpm-up approach. We begin
with the physical measures provided by the BlindrEeseparation Evaluation
Toolkit (BSS Eval) and we then look for correspomgdmerceptual correlates.
This approach is known gssychophysics and has the distinct advantage of
leading to interpretablgsychophysical models. We obtained perceptual simi-
larity judgments from listeners in two experimef@aturing vocal sources with-
in musical mixtures. In the first experiment, liséeés compared the overall qual-
ity of vocal signals estimated from musical mix&itesing a range of competing
source separation methods. In a loudness experitisteners compared the
loudness balance of the competing musical accompartiand vocal. Our pre-
liminary results provide provisional validationtbie psychophysical approach.
Keywords: Deep learning, source separation, perceptual atrafu

1  Introduction

Audio source separation methods typically attengptecover or estimate signals,
known as ‘sources’, that have been mixed. The siscogthis “unmixing” process is
evaluated both objectively, using BSS Eval [1], anbjectively by asking listeners to
rate the perceived quality using methods such asSNRIA [2,3]. Unfortunately,
observed correlation between the BSS Eval measuréghe subjective evaluations
has proved sufficiently poor [4-9] that the commuyrias rejected the BSS Eval
measures as invalid.

It is difficult to relate physical measures (suchBSS Eval) to subjective evalua-
tions of audio quality, as the latter is affectgdabwide range of perceptual attributes,
dependencies on suitability for purpose, as welhdi&/idual opinion and preference.
This approach could be considered as b&pglown, where we begin with perceptu-
al (subjective) ratings that we find are importaard then seek physical (objective)
measures which are correlated. The downside otapalown approach is that we
may not find such physical measures because weotdfully understand the process
of audition.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011



An alternative method would be to approach the leratibottom-up, where we in-
stead begin with physical measures which are desariof the audio signals and we
look for perceptual measures which correlate toptingsical measures. This approach
is known asgpsychophysics and has the advantage of being able to produegpirta-
ble, psychophysical models relating the known ptalsimeasures to corresponding
perceptual measures. This paper examines whettt@nmbap psychophysical evalua-
tion principles can be applied in source separatesearch to obtain perceptual
measures with better correlation to the objectieasures.

A. Psychophysics

The main principle of psychophysics is that thexestepsychological correlates of
physical parameters [10,11]. A psychological catelis a measurable behaviour,
relating to body or mind, that is a (usually momity function of some controllable,
physical parameter of the stimulus. These psychsipal correlates are typically
identified or substantiated using perceptual dBerhaps the most well established
example of a psychophysical correlate is loudn&8% Loudness theory defines the
loudness of a given sound as the auditory perckptreelate of acoustic intensity.
Hence, for a given signal, variations in intensityrespond to perceptual variations in
loudness. Subjective judgments of loudness aréeglifrom listeners for stimuli with
varying degrees of intensity. Although acousticendity may be considered as an
absolute physical measurement (e.g., sound predsued), psychophysical para-
digms for the study of loudness typically involedative judgments relating the loud-
ness of one sound to that of another sound [13¢ flost common methods for
studying loudness involve comparisons of pairsgrias. The most direct method for
loudness comparison is known as magnitude rationagon [13], where listeners
provide a numerical ratio estimate that capturesitludness ratio between a given
pair of stimuli.

B. Application of Psychophysics to Source Separation

A psychophysical approach could be applied to soagparation. When undertaking
objective measurements of an arbitrary mixturerafin signals, the separated signal
from a given separation algorithm (the signal eatajp may be compared to the
known separate signals for evaluation. Any diffeeebetween the signal estimate
and the corresponding known signal is often desdrés ‘distortion’ [1]. By subtract-
ing the known signal from the signal estimate,feedgnce (i.e. distortion) signal may
be obtained. The ratio of the known signal enemyhte energy of this difference
signal is known as the signal-to-distortion rat8DR) [1]. The difference signal is
decomposed into two parts: an interference sigraisidered to be due to the influ-
ence of other sources on the target source estiaratean artefacts signal, considered
to be that part of the estimate that is not dueitioer the target signal or any of the
other signals. The ratio of the known target sigradrgy to an estimate of the energy
remaining from the interfering signals is knownthe source-to-interference ratio
(SIR), and the ratio of the known target signaihe artefacts signal energy is known
as the source-to-artefacts ratio (SAR). If SAR &t are employed as the physical
measures, a magnitude ratio estimation methodadbgubjective attributes related to



these factors could result in a close correlatietwben the subjective and objective
metrics. As for the loudness example above, thenihade ratio estimation method-
ology would involve comparative judgements, in ttése judgements of the similari-
ty of certain aspects of the signals.

The subjective attribute selected to compare to &R the similarity of the vo-
cal; this is a judgement of the effect of artefamtsthe perceived similarity of the
target signal. This can be analysed such that judgés that are similar to the known
target signal are positioned at one end of theeseald judgements that are dissimilar
to the known target signal are positioned towalgsdpposite end of the scale. The
subjective attribute selected to compare to SIR thasloudness-balance-similarity;
this is a judgement of the similarity of the pewvesl loudness balance between the
target and interferer signals. This can be analgseti that judgements that are simi-
lar to the known target signal are positioned a end of the scale, and judgements
that are dissimilar to the known target signalsinilar to the unseparated mixture
signal, are positioned at the towards the oppaesiteof the scale.

C. Overview

In this paper, we introduce a psychophysical evadnamethod based on magnitude
ratio estimation corresponding as closely as pts$thSAR and SIR. In the follow-
ing section we describe two preliminary listenirggts featuring real-world audio
examples obtained from a range of state-of-thexadio source separation methods
(see [14]). Next, we describe the resulting percgptata and correlations with the
physical measures to evaluate the match betweepdieeptual and physical data.
Then, we analyse the data from the point of viewnoidel comparison in order to
evaluate whether the subjective judgements produeaningful results. Finally, we
provide some brief discussion.

2 Method
The prevailing MUSHRA perceptual evaluation methfid8] are focused on obtain-
ing interpretable perceptual measures and, hemgeattempt at modelling is a sec-
ondary consideration. In contrast, the sole aimwfpsychophysical study is to estab-
lish perceptual correlates of the physical parameféocussing on separation of vo-
cals from musical mixtures, we conducted two listgrtests using stimuli generated
using competing methods for source separationehésts were asked to locate each
of the respective versions of each given vocalaign a perceptual line such that the
placement on the line captured the perceptual aiityil relationships between the
respective sounds. In the first experiment, as ragmtual correlate of the physical
measure SAR, we evaluatsidnilarity of the vocal. In the second experiment, to cap-
ture the loudness balance (between the vocal acohgmaniments) as a perceptual
correlate of the physical measure SIR, we evalusbedness-balance-similarity.
Critically, in both cases the stimuli placed onleperceptual line included the mix-
ture and original (pre-mixture) vocal signal.

We consider five competing source separation mestlibdl] featuring deep neural
networks (DNN). One of the five methods comprisebageline DNN modellM
_baseline) and the remaining four methods comprise multiystarchitectures which



extend the baseline DNN model with various pararnssttons I_DNN_1-3) and/or
non-negative matrix factorisatioM( NMF) — see [14]. Critically, the DNN architec-
tures in [14] are designed as augmentations ob#fseline DNN architecture which
attempt to improve the method.

In an experiment where multiple stimuli were conguhdirectly, six listeners
were asked to provide judgements on the percepivglarity between 30-second
musical excerpts. The excerpts, chosen as repagsendf typical musical mixtures
featuring typical vocal and accompaniment, wereemakom the mixes of 10 songs
selected from theest set of the ‘MUS’ task of the SISEC challenge [15]. Timéture
for each song was a summation of the available stevhere the stems comprised
vocals, bass, drums and other (accompaniment)engss reported normal hearing
and were naive to the purpose of the test. Mastinéss had some prior experience of
listening tests and all were familiar with musistdining, audio production and/or
recording technologies.

Simuli. We consider the separation of the vocal (stem)asiffom the accompa-
niment signal within a mixture. All mixtures werellapsed (summed) to mono (sin-
gle channel) and the various, competing sourceragpa methods were each inde-
pendently applied to each of the 10 mixtures. Tbieesseparation output of each of
the five source separation methods was used. liti@addthe mixture and original
vocal stem signals were also used, providing #radte stimuli for each song. From
the point of view of the source separation metheiployed, we note that the mix-
tures separated were not used in training the deepal networks (i.e., we are con-
cerned with evaluation of the models on teg set). Closed (isolating) headphones
were used to present the stimuli. Presentationm@saural and diotic (same in both
ears). Listeners were instructed to set the volaamdrol on the amplifier for a com-
fortable listening level at the beginning of thettand did not adjust it further during
the test. Listeners were unpaid volunteers.

Procedure. In the case of the first experiment, similarity gednents about the vo-
cal sources were solicited. Listeners were instdicd compare only the vocal com-
ponent of the mixture in this experiment. Eventie tase of the full mixture, this
means that the listeners had to isolate their péice of the vocal component for
comparison. The listeners declared that they wile ta do this to their satisfaction.
In the second experiment, similarity judgementsensolicited comparing the loud-
ness balance (see [16]) between the vocal and g@amiment in each presented stim-
ulus.

Listeners were presented with an interface feagusiven play buttons and seven
respective sliders (on a computer screen). Each Imldton and slider represented
either one of the five voice separation outputsnfithe respective models or the mix-
ture or the original vocal source. Using each iittial ‘play’ button, listeners were
able to listen to each of the respective altermatsions of the vocal at will and could
repeat an unlimited number of times. Listenersrayed the vertical placement of the
seven sliders to capture the similarity relatiopstbetween the various stimuli, such
that sliders for very similar stimuli were placddsely (on the vertical axis) and slid-
ers for dissimilar stimuli were placed with greatkstance. Note that the absolute
placements of the sliders is not informative. Ligtes were briefed to maximise their
use of the scale for each song but were not brigdedttempt to make consistent
judgements across songs.



Listeners evaluated the stimuli in sessions ofdriys. There was no explicit time
constraint on the sessions. Most sessions were letadpin under 25 minutes. The
presentation order (both the order of the songstlamarder of stimuli for each song)
was randomised so that each slider correspondeddifferent stimulus each time.
Sliders were reset before each new song. Whenigtenér had completed the ar-
rangement of the sliders for a given song a ‘neutton was pushed for the next song.

Analysis I: Correlation. Listeners did not make comparisons between songs bu
only within each song, hence we must first testedations within the context of each
song, before summarising the correlation over thesdngs. For the perceptual data
resulting from each listening test, the slider pfaents corresponding to the original
vocal were subtracted (by way of reference) fromdther placements on a song-by-
song basis. The slider placement data for the raigiocal were subsequently dis-
carded. For each of the stimuli used in the expamnis (except the original vocal
signals which are not suitable for analysis), tleeresponding physical measures
(SAR/SIR) were computed using the toolbox assodiatiéh [1].

For the data of each listening test, a separateslation analysis was conducted
on a song-by-song basis. The medians of the silgetata were calculated for each
song and each stimulus (therefore averaging a¢hesgesults of the listeners). This
resulted in 6 perceptual measures per song, penilig test. Next, the corresponding
SAR and SIR values for each song (6 measures pg) seere used to compute linear
(Pearson) correlation coefficients with the respecperceptual data for that song.
The correlation was calculated between the data fitee first (vocal similarity) ex-
periment and SAR, and the data from the secondifiess balance similarity) exper-
iment and SIR. This provided, for each listeningt,ta set of 10 (song-wise) correla-
tion coefficients. To summarise (over songs) edcth® two respective distributions
we take the median correlation coefficient.

Next, in order to provide a measure of statistgighificance for the respective
median correlation coefficients, permutation tg4f8] were conducted. The above
procedure for computing the song-wise distributafncorrelation coefficients was
repeated 10,000 times. Each of these 10,000 tipres, to the correlation computa-
tion, the order of the data were randomly shuffletHe median of this distribution
was then taken and, over the 10,000 replicationsgrapirical null distribution (of
null across-song medians) was accumulated. Finddly,number of median correla-
tion coefficients that was greater than or equdatal with the same sign as) the actu-
al median correlation coefficient was counted aneé tesulting count divided by
10,000. This provides an empirical estimate of pebability of the respective
across-song median correlation coefficient occgriiy chance (& value).

Analysis Il: Model comparison. In contrast to the correlation analysis described
above, in this analysis we are interested in olgmeaiformance comparisons of the
models in terms of perception. Across-song meane wemputed for each listener
and collated. The resulting data were analysedgusim-parametric statistical meth-
ods (see [18]). Initially, a main-effects analysias conducted for the data of each
test using a Friedman test. Next, post-hoc analysge conducted on a pair-wise
basis in order to determine which pairs of modawsed evidence of being signifi-
cantly different. The post-hoc pairwise analyseas lva considered ‘planned tests’ and
so contrasts were limited (in advance) to compagdmetween the baseline model and
the respective, competing multi-stage models. Waatgprovide correction for mul-



tiple comparisons, primarily because of the limitednber of listeners involved and
because of the minimal number of planned contrasts.
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Fig. 1. Perceptual similarity versus SAR.Listeners organized sliders representing the seven
respective stimuli along perceptual lines whichidiefine perceived similarity of the vocal
component. These scatter plots show, on a son@iy-Basis, across-listener median percep-
tual slider placement as a function of SAR. Dashey ¢ines indicate linear regression lines
shown for illustration only. Note: axis scale aadge vary.
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Fig. 2. Loudness balance similarity versus SIRListeners organized sliders representing the
seven respective stimuli along perceptual linechvidiepict the perceived similarity  of the
loudness balance between the vocal and the accomg@in These scatter plots show, on a
song-by-song basis, across-listener median peraeplider placement as a function of SIR.
Dashed grey lines indicate linear regression Isteswn for illustration only. Note: axis scale
and range vary.

3 Results: Analysis | —Psychophysical Correlation

In the correlation analysis, we are not concernil the question of which model is

best, but rather we are concerned with the questiavhether the physical measures
correlate with the perceptual measures. For theeptmal data of the first listening

test @milarity), Fig. 1 plots, on a song-by-song basis, the acliegener medians as a
function of the respective SAR measures. Note foatillustrative purposes only, in

these plots we limited the upper SAR (for the arddimixtures) to 10 dB (because
these numbers would otherwise be at the limitsre€igion). Fig. 2 plots the equiva-



lent for the perceptual data of the secomtidness balance similarity) listening test.
Linear regression lines are shown in grey for thaton. Qualitatively, the scatter
plots of Fig. 1 show some evidence of monotonindsebut are somewhat noisy and
appear to be dominated by the extremes of slidergphent. The scatter plots of Fig.
2 show more obvious monotonic trends.
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Figure 3 shows box-plots capturing the respectiveetation coefficient distribu-
tions (each over the 10 songs) relating to thespédtFigs. 1 and 2. The median
across-song correlations are both around 0.91 attddre significantR<0.01, Per-
mutation test, n=10,000). In other words, our measures correlaté ae a song-by-
song basis, with the physical measures, suggestatgour psychophysical paradigm
is reliable.

4 Results: Analysis Il — Comparison of Separation Mdtods

Figure 4a shows box-plots of the data resultingnfithe first experiment (vocal
similarity). The original vocal and the vocal-withinixture are deemed to be very
similar within the context of the experiment. Th&ga significant main effect among
the different modelsR < 0.05, Friedman Tesg? = 10.93,df = 4). In the pairwise
post-hoc analysis, we find no evidence that theultesfor multi-stage model
M_DNN1 or the M_NMF model are significantly differefrom the baselineP( >
0.05, paired Wilcox tests, two tailed). However,ltinstage models M_DNN2-3 are
significantly less similar to the original vocaktihthe baseliné?(< 0.05,paired Wil-
cox tests, two tailed).

Figure 4b shows the respective box-plots of the dasulting from the second
(loudness balance) experiment. In this case, theéunei and original voice are not
located together (by the listeners) but are locatiedpposite ends of the perceptual
space. This indicates that the listeners took th&seas bounding the space; the mix-



ture providing the minimum ratio of vocal-to-acccamgment loudness and the origi-
nal vocal providing the maximum ratio of vocal-toeampaniment loudness (i.e., the
ratio was theoretically infinite). Between the twatremes, there is a reasonable
spread over the models. There is a significant raffect among the different models
(P < 0.05,Friedman Test, ° = 19.07 df = 4). In post-hoc analysis, the baseline model
is the worst performer and is not significantlyfeiiént from the M_NMF modeR(>
0.05, paired Wilcox Tedt, two tailed). All the multi-stage models suppress the accom-
paniment significantly better than the baseline eh@® < 0.05,paired Wilcox test,
two-tailed). We did not perform contrasts between the respectulti-stage models
because we are chiefly interested in whether thétiastage models offer an im-
provement over the baseline model.

Combining the evidence from the two respectivestisig tests, with respect to the
performance of the baseline model, for multi-stagelel M_DNNL1 there is a signifi-
cant perceptual improvement in accompaniment sggpe and no associated evi-
dence of a corresponding drop in vocal sound quatbwever, for the alternative
multi-stage models (M_DNN2, M_DNN3, M_NMF) althoughere is evidence of
significantly better suppression than baselineigli®also evidence of corresponding-
ly significantly worse distortion than baseline.€féfore, in these cases, it would
appear that there has been a trade-off [19], withroved accompaniment suppres-
sion coming at the expense of vocal sound quality.

5  Conclusion and Discussion

In this paper, we have described and demonstrapsychophysical evaluation meth-
od for audio source separation. Our method has Heeronstrated in the context of
vocal separation from musical mixtures. In conttaghe prevailing MUSHRA para-

digms [4-9], our perceptual results are highly etated with the physical measures
SAR and SIR. Thus, our results tend to suggestligapreviously reported failures of
the physical measures to correlate with perceptatd [4-9] may be the inherent re-
sult of methods which do not hold to the necespayghophysical principles. In addi-
tion, our psychophysical paradigm paves the wayHerdevelopment of psychophys-
ical models (e.g., see [19]) more suitable to atbadge between the physical
measures and the quality-of-experience measureshwdrie more informed by the
practical uses of and motivations for source sdjmraFuture work is necessary to
determine whether these preliminary results areigdiaable to stimuli with a wider

distribution of physical measurement values arargelr cohort of listeners.

We have also demonstrated that the psychophysiediation approach is suita-
ble for comparison of competing audio source sejmaranethods. For one of the
multi-stage deep neural network separation meththéscombined results of the two
experiments described here capture improved acaompat suppression without
any evidence of a corresponding penalty in the @ated vocal quality. By contrast,
the alternative multi-stage models appear to aehibeir suppression at the cost of a
trade-off [19] of improved suppression for addestalition. Future work should in-
clude generalisation of the psychophysical paradiym larger range of stimuli and a
larger cohort of listeners. In addition, some metm®btain uniformly distributed
physical measures would improve the interpretahilftthe results.
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