Skip to main content

Color War: Cellular Automata with Majority-Rule

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10168))

Abstract

Consider a graph \(G=(V,E)\) and a random initial vertex-coloring such that each vertex is blue independently with probability \(p_{b}\le 1/2\), and red otherwise. In each step, all vertices change their current color synchronously to the most frequent color in their neighborhood (in the case of a tie, a vertex conserves its current color). We are interested in the behavior of this very natural process, especially in 2-dimensional grids and tori (cellular automata with majority rule). In the present paper, as a main result we prove that a grid \(G_{n,n}\) or a torus \(T_{n,n}\) with 4-neighborhood (8-neighborhood) exhibits a threshold behavior: with high probability, it reaches a red monochromatic configuration in a constant number of steps if \(p_b\ll n^{-\frac{1}{2}}\) (\(p_b\ll n^{-\frac{1}{6}}\)), but \(p_b\gg n^{-\frac{1}{2}}\) (\(p_b\gg n^{-\frac{1}{6}}\)) results in a bichromatic period of configurations of length one or two, after at most \(2n^2\) (\(4n^2\)) steps with high probability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balister, P., Bollobás, B., Johnson, J.R., Walters, M.: Random majority percolation. Random Struct. Algorithms 36(3), 315–340 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hypercube. Comb. Probab. Comput. 18(1–2), 17–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2 (2012)

    Google Scholar 

  4. Einarsson, H., Lengler, J., Panagiotou, K., Mousset, F., Steger, A.: Bootstrap percolation with inhibition. arXiv preprint arXiv:1410.3291 (2014)

  5. Fazli, M., Ghodsi, M., Habibi, J., Jalaly, P., Mirrokni, V., Sadeghian, S.: On non-progressive spread of influence through social networks. Theoret. Comput. Sci. 550, 36–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feller, W.: An Introduction to Probability Theory and its Applications: Volume I, vol. 3. Wiley, London (1968)

    MATH  Google Scholar 

  7. Flocchini, P., Královič, R., Ružička, P., Roncato, A., Santoro, N.: On time versus size for monotone dynamic monopolies in regular topologies. J. Discret. Algorithms 1(2), 129–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (social) influence networks. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41527-2_30

    Chapter  Google Scholar 

  9. Goles, E., Olivos, J.: Comportement périodique des fonctions à seuil binaires et applications. Discret. Appl. Math. 3(2), 93–105 (1981)

    Article  MATH  Google Scholar 

  10. Gray, L.: The behavior of processes with statistical mechanical properties. In: Kesten, H. (ed.) Percolation Theory and Ergodic Theory of Infinite Particle Systems, pp. 131–167. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  11. Koch, C., Lengler, J.: Bootstrap percolation on geometric inhomogeneous random graphs. arXiv preprint arXiv:1603.02057 (2016)

  12. Kozma, R., Puljic, M., Balister, P., Bollobás, B., Freeman, W.J.: Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern. 92(6), 367–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mitsche, D., Pérez-Giménez, X., Prałat, P.: Strong-majority bootstrap percolation on regular graphs with low dissemination threshold. arXiv preprint arXiv:1503.08310 (2015)

  14. Molofsky, J., Durrett, R., Dushoff, J., Griffeath, D., Levin, S.: Local frequency dependence and global coexistence. Theoret. Popul. Biol. 55(3), 270–282 (1999)

    Article  MATH  Google Scholar 

  15. Moore, C.: Majority-vote cellular automata, ising dynamics, and p-completeness. J. Stat. Phys. 88(3–4), 795–805 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oliveira, G.M., Martins, L.G., Carvalho, L.B., Fynn, E.: Some investigations about synchronization and density classification tasks in one-dimensional and two-dimensional cellular automata rule spaces. Electron. Notes Theor. Comput. Sci. 252, 121–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Oliveira, M.J.: Isotropic majority-vote model on a square lattice. J. Stat. Phys. 66(1–2), 273–281 (1992)

    Article  MATH  Google Scholar 

  18. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282(2), 231–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus on complete graphs. In: INFOCOM 2009, IEEE, pp. 2527–2535. IEEE (2009)

    Google Scholar 

  20. Poljak, S., Sura, M.: On periodical behaviour in societies with symmetric influences. Combinatorica 3(1), 119–121 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Poljak, S., Turzík, D.: On pre-periods of discrete influence systems. Discret. Appl. Math 13(1), 33–39 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schonmann, R.H.: Finite size scaling behavior of a biased majority rule cellular automaton. Phys. A: Stat. Mech. Appl. 167(3), 619–627 (1990)

    Article  MathSciNet  Google Scholar 

  23. Shao, J., Havlin, S., Stanley, H.E.: Dynamic opinion model and invasion percolation. Phys. Rev. Lett. 103(1), 018701 (2009)

    Article  Google Scholar 

  24. Spitzer, F.: Interaction of markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad N. Zehmakan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gärtner, B., N. Zehmakan, A. (2017). Color War: Cellular Automata with Majority-Rule. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53733-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53732-0

  • Online ISBN: 978-3-319-53733-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics