
u n i ve r s i t y o f co pe n h ag e n

A stable non-interleaving early operational semantics for the pi-calculus

Hildebrandt, Thomas Troels; Johansen, Christian; Normann, Håkon

Published in:
Journal of Logical and Algebraic Methods in Programming

DOI:
10.1016/j.jlamp.2019.02.006

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Hildebrandt, T. T., Johansen, C., & Normann, H. (2019). A stable non-interleaving early operational semantics
for the pi-calculus. Journal of Logical and Algebraic Methods in Programming, 104, 227-253.
https://doi.org/10.1016/j.jlamp.2019.02.006

Download date: 19. Mar. 2024

https://doi.org/10.1016/j.jlamp.2019.02.006
https://doi.org/10.1016/j.jlamp.2019.02.006

Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

A stable non-interleaving early operational semantics for the

pi-calculus

Thomas Troels Hildebrandt a,1, Christian Johansen b,∗,2, Håkon Normann a,1

a Department of Computer Science, Copenhagen University, Denmark
b Institute of Informatics, University of Oslo, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 December 2017
Received in revised form 1 August 2018
Accepted 19 February 2019
Available online 21 February 2019

Keywords:
Pi-calculus
Non-interleaving
Early semantics
Asynchronous transition systems
Stability
Causality

We give the first non-interleaving early operational semantics for the pi-calculus which
generalises the standard interleaving semantics and unfolds to the stable model of prime
event structures. Our starting point is the non-interleaving semantics given for CCS by
Mukund and Nielsen, where the so-called structural (prefixing or subject) causality and
events are defined from a notion of locations derived from the syntactic structure of the
process terms. We conservatively extend this semantics with a notion of extruder histories,
from which we infer the so-called link (name or object) causality and events introduced
by the dynamic communication topology of the pi-calculus. We prove that the semantics
generalises both the standard interleaving early semantics for the pi-calculus and the
non-interleaving semantics for CCS. In particular, it gives rise to a labelled asynchronous
transition system unfolding to prime event structures.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The pi-calculus [30] is the seminal model for concurrent mobile processes, representing mobility by the fresh creation
and communication of channel names. The standard operational semantics [30,29] adopt an interleaving approach to concur-
rency, that represents concurrent execution of actions as their arbitrary sequential interleaving and employ basic transition
systems as semantic models.

However, the ability to distinguish concurrency from interleaving has several practical applications, including dealing
with state-space explosion in model-checking [14], supporting action refinement [42], reversibility (e.g. [41,27]), or symme-
try [46], besides the gains in expressiveness and modelling accuracy.

To give a non-interleaving semantics one needs to identify the underlying events and their concurrency and causality
relationships, and from that define a notion of non-interleaving observations, e.g. in terms of a bisimulation or testing
equivalence [38,42] or employ a non-interleaving model (e.g., event structures [34,47], asynchronous transition systems [3,
40] or Petri nets [9]), in which the concurrency can be represented explicitly. The dynamic communication topology of
the pi-calculus makes it non-trivial to identify what accounts for causality, and indeed several possible approaches have
been proposed. As described in [5], the source of the complexity is that the causal dependencies fall in two categories:

* Corresponding author at: Dept. of Informatics, University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway.
E-mail addresses: hilde@di.ku.dk (T.T. Hildebrandt), cristi@ifi.uio.no (C. Johansen), normann@di.ku.dk (H. Normann).

1 The first and last author are supported by the Velux Foundation through the COMPART project (grant 33295).
2 The second author (previously known as Cristian Prisacariu) was partially supported by the project IoTSec – Security in IoT for Smart Grids, with

number 248113/O70 part of the IKTPLUSS program funded by the Norwegian Research Council.
https://doi.org/10.1016/j.jlamp.2019.02.006
2352-2208/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jlamp.2019.02.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://creativecommons.org/licenses/by/4.0/
mailto:hilde@di.ku.dk
mailto:cristi@ifi.uio.no
mailto:normann@di.ku.dk
https://doi.org/10.1016/j.jlamp.2019.02.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2019.02.006&domain=pdf

228 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
The structural (prefixing or subject) dependencies, coming from the static process structure, i.e. action prefixing and parallel
composition, and the link (name or object) dependencies, which come from the dynamic creation of communication links
by scope extrusion of local names.

There has been quite some work on providing non-interleaving semantics for pi-calculus [32,24,9,5,38,12,17,19,18] and
process algebras in general (e.g. [8,11]). Among the most recent work, a stable operational semantics for reversible, deter-
ministic and finite pi-calculus processes is provided in [19]. Stability means that every event depends on a unique history
of past events, which supports reversibility of computations. More detailed discussions of these related works are provided
in Section 5.

A denotational semantics for the pi-calculus is provided in [16,17] as extended event structures. The semantics discards
the property of stability to avoid the complexity and increase in number of events arising from achieving unique dependency
histories. Both papers consider the late style pi-calculus semantics, where names received from the environment are kept
abstract and thus distinct from any previously extruded names. In the early style semantics, names received from the
environment are concrete, and thus may be identical to a previously extruded name. Consequently, the choice between late
and early style semantics influences the link causality. We found no prior work providing a stable, non-interleaving, early
style structural operational semantics generalising the standard early operational semantics of the pi-calculus.

Summary of contributions. Our key contribution is to provide the first stable, non-interleaving operational early semantics
for the pi-calculus that generalises the standard, non-interleaving early operational semantics for the pi-calculus [39]. Our
starting point is the work of Mukund and Nielsen [33], which defines a structural operational non-interleaving semantics
for Milner’s CCS [28] as (labelled) asynchronous transition systems using locations to identify the structural causality, which
is the only type of causality in CCS. We generalise the approach of [33] to the pi-calculus by, in addition to the structural
locations, employing a notion of extrusion histories, recording the location of both name extrusions and name inputs. To-
gether, the locations and extrusion histories allow to identify the underlying events of transitions and both their structural
and link causal dependencies.

The notion of extrusion histories was inspired by the recent works of Crafa, Varacca, and Yoshida [16,17]. Their work
provides an elegant non-interleaving denotational semantics for the pi-calculus. The elegance is obtained by using a new
notion of extended event structures, which allows for non-stable causality, that is, an event does not need to have a unique
smallest configuration enabling it. An example of such apparent need for non-stable causality is provided by the process
(νn)(a〈n〉 || b〈n〉 || n(x)), where the input n(x) depends on the extrusion of n by one of the concurrent outputs in a〈n〉 || b〈n〉,
not both. If one insists on employing a stable non-interleaving model, it seems necessary to have two different (conflicting)
events producing the input action n(x) representing the two possible dependencies. It is claimed in [16,17] that the technical
details become intractable if one insists on employing a stable non-interleaving model. However, the price is that the
semantics does not immediately relate to standard, stable models such as asynchronous transition systems and prime event
structures.

Overview of paper. In Section 2 we generalise the structural operational early semantics for the pi-calculus with locations
for transitions, extrusion histories and link dependencies. In Section 3 we provide some correctness results for our semantics,
showing that it is a conservative extension of the non-interleaving semantics for CCS and that it conforms to the standard
early operational semantics for pi-calculus. We also discuss the differences between early and late semantics. In Section 4
we show that the semantics yields a standard labelled asynchronous transition system, which is known to unfold to labelled
prime event structures [47]. We conclude and comment on future work in Section 5.

This paper is an extended version of the LATA2017 conference paper [23]. The present paper works out all the proofs in
full detail and adds additional examples and descriptions to explain better our main results. We also add various interme-
diate helper results and definitions, needed to prove the main results; e.g., the contents from the beginning of Section 3 are
needed to prove the main result of Propositions 3.6 and 3.7 which in [23] was only stated as Proposition 8 at the end of
Section 2 there. The related works discussions have also been substantially elaborated.

2. Non-interleaving early operational semantics

In this section we give a non-interleaving early operational semantics for the pi-calculus.
We first recall the syntax and standard interleaving early semantics for the pi-calculus with guarded choice.

2.1. Pi-calculus syntax and standard interleaving semantics

Definition 2.1. The set of pi-calculus processes Proc, ranged over by P , Q , are defined using an infinite set of names N ,
ranged over by small letters, by the grammar:

P ::= �i∈Iϕi .Pi | (νn)P | P || Q | !P | 0, ϕ ::= a〈n〉 | a(x)

providing constructs for, respectively: guarded non-deterministic choice of output and input prefixes, restriction of name
n, parallel composition, replication, and the empty/trivial process. For a process P we denote by n(P) the set of all names

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 229
appearing in P , by bn(P) the bound names, i.e. those n that are restricted by (νn) or by the input action a(n), and by
fn(P) = n(P)\bn(P) the free names. E.g. for the process (νn)a(x) we have n((νn)a(x)) = {n, a, x}, bn((νn)a(x)) = {n, x}, and
fn((νn)a(x)) = {a}. We let P {x := n} denote the process P where every free occurrence of the name x has been substituted
by the name n. We assume all bound names are unique in a process and identify processes up to α-conversion. We make
a habit of using a, b, ... for names that are meant to indicate channels/links for communication, m, n, ... for names that are
being transmitted over channels, and x, y, z, ... when we intend these names to be substituted. We often omit the indexing
set I in the notation for a sum process �i∈Iϕi .Pi and use only �ϕi .Pi . When I = ∅ then we write 0 instead of �i∈∅ϕi .Pi , and
when I is singleton we omit the sum symbol, e.g., a〈n〉.P . As standard, we often omit the trailing 0, e.g. writing a(x).b〈m〉
instead of a(x).b〈m〉.0.

Next we recall the standard interleaving early semantics for the pi-calculus (see e.g. [37,31]).

Definition 2.2 (Standard pi-calculus semantic rules). We denote by −→π the standard interleaving early semantics given by the
following operational rules, ignoring the symmetric versions of the (par), (close) and (com) rules.

(inp)

a(x).P
a(n)−−→π P {x := n}

(out)

a〈n〉.P a〈n〉−−→π P

P || !P α−→π P ′
(bang)

!P α−→π P ′
ϕi .Pi

α−→π P ′
i

(sum)

�ϕi .Pi
α−→π P ′

i

P
α−→π P ′ bn(α) ∩ fn(Q) = ∅

(par)

P || Q
α−→π P ′ || Q

P
α−→π P ′ b /∈ n(α)

(res)

(νb)P
α−→π (νb)P ′

P
a〈n〉−−→π P ′ n
= a

(open)

(νn)P
(νn)a〈n〉−−−−−→π P ′

P
(νn)a〈n〉−−−−−→π P ′ Q

a(n)−−→π Q ′
(close)

P || Q
τ−→π (νn)(P ′ || Q ′)

P
a〈n〉−−→π P ′ Q

a(n)−−→π Q ′
(com)

P || Q
τ−→π P ′ || Q ′

Note we use the (also standard) notation (νn)a〈n〉 for the bound output (extrusion) of n instead of the notation a(n) used
in e.g. [37].

Definition 2.3 (Standard pi generated transition system). The transition system generated using the standard interleaving, early
operational semantics from Definition 2.2 is denoted TSπ = (S, �, −→π) and defined similarly:

• The set of states contains just process terms as in Definition 2.1, i.e., S
�={P | P ∈ Proc};

• The set of labels λ ∈ � is defined by the grammar λ ::= (νn)m〈n〉 | m〈n〉 | m(n) | τ ;
• −→π⊆ S × � × S are the transitions from Definition 2.2.

For a pi-process P , the transition system reachable from P is denoted TSπ (P).

2.2. Early non-interleaving operational semantics

We now give the early non-interleaving operational semantics for pi-processes given by the rules in Fig. 1. The transitions
are of the form (H, H) � P

α−→
u

(H
′
, H′) � P ′ . Compared to the standard semantics above, our semantics employs location labels

u under the transitions and extrusion histories (H, H) to the left of the turnstile. For reasons to be explained below, we have
also simplified action labels by not having scope extrusion represented in the labelling. Formally, action labels are defined
as follows.

Definition 2.4. The action labels (or simply actions) ranged over by α, β are of the following three kinds:

a〈n〉 output
a(n) input
τ silent

For an action α, let n(α) denote the set of names appearing in the label, that is, n(a〈n〉) = n(a(n)) = {a, n}.

230 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
u = [a(x).P][P ′] P ′ = P {x := n}
(in)

(H,H) �a(x).P
a(n)−−→

u
(H,H ∪ {(n, u)}) �P ′

u = [a〈n〉.P][P]
(out)

(H,H) �a〈n〉.P a〈n〉−−→
u

(H,H) �P

(H,H) �P
a〈n〉−−→

u
(H

′
,H′) �P ′ n
= a

(open)

(H,H) �(νn)P
a〈n〉−−→

u
(H

′ ∪ {(n, u)},H′) �P ′

(H,H) �P
α−→
u

(H
′
,H′) �P ′ b /∈ n(α)

(scope)

(H,H) �(νb)P
α−→
u

(H
′
,H′) �(νb)P ′

(H,H) �P || !P α−→
u

(H
′
,H′) �P ′

(rep)

(H,H) �!P α−→
u

(H
′
,H′) �P ′

(H,H) �ϕi .Pi
α−→
u

(H
′
,H′) �P ′

(sum)

(H,H) ��i∈I : ϕi .Pi
α−→
u

(H
′
,H′) �P ′

H
′′ = {(n, u) | ∃a.α = a〈n〉,n ∈ dom([j]H),

∀l.l|{0,1} � iu : (n, l) /∈ H ∪ H}
([ǐ]H, [ǐ]H) �Pi

α−→
u

(H
′
i ,H′

i) �P ′
i

P j = P ′
j and j = 1 − i

b̃ = dom(H
′
i)\dom([ǐ]H)

b̃ ∩ fn(P j) = ∅
(pari), i ∈ {0,1}

(H,H) �P0 || P1
α−→
iu

(
(H\[i]H) ∪ iH

′
i ∪ iH

′′
, (H\[i]H) ∪ iH′

i

) �P ′
0 || P ′

1

H′′ = {(n, u j) |
∃(n, l) ∈ [i](H ∪ H) : l|{0,1} � ui}

([ǐ]H, [ǐ]H) �Pi
a〈n〉−−→
ui

(H
′
i ,H′

i) �P ′
i

b̃ = dom(H
′
i)\dom([ǐ]H)

b̃ ∩ fn(P j) = ∅, j = 1 − i

([ǰ]H, [ǰ]H) �P j
a(n)−−→
u j

(H
′
j ,H′

j) �P ′
j

(comi), i ∈ {0,1}
(H,H) �P0 || P1

τ−−−−−−→〈0u0,1u1〉 (H,H ∪ jH′′) �(νb̃)(P ′
0 || P ′

1)

Fig. 1. Early operational semantics with action labels α ::= τ | a〈n〉 | a(n), locations u (under the arrows) and extruder histories (H, H) (to the left of the
turnstile). We identify processes up-to α-equivalence, assume unique bound names, and require for all rules, if (H, H) � P

α−→
u

(H
′
, H′) � P ′ is the conclusion,

then dom(H ∪ H) ∩ bn(P) = ∅. For rules (comi) where i ∈ {0, 1}, we allow writing (ν∅)P and (ν{n})P for P and (νn)P respectively. The blue text shows
what is added to the standard semantics. (For interpretation of the colours in the figure and text, the reader is referred to the web version of this article.)

Recalling from [33], the set of prefix locations, i.e. locations of action prefixes inside process terms, is defined as follows.

Definition 2.5. Let L = {0, 1}∗ × Proc × Proc be the set of prefix locations and write s[P][P ′] for triples (s, P , P ′) ∈ L. For
l = s[P][P ′] let l|{0,1} = s and let � be the (reflexive) prefix order on {0, 1}∗. We use ε ∈ {0, 1} as the empty string, which
we often omit and only write [P][P ′] instead of ε[P][P ′].

Proposition 2.6 (Location labels). The location label u of a transition (H, H) � P
α−→
u

(H
′
, H′) � P ′ derived by the rules in Fig. 1 has the

form:

1. u = s[P][P ′] ∈L, if α is an input or output action,
2. u = s〈0s0[P0][P ′

0], 1s1[P1][P ′
1]〉, for sisi[Pi][P ′

i] ∈L and i ∈ {0, 1}, if α = τ .

Proof. By induction on the length of the derivation tree of the transition (H, H) � P
α−→ (H

′
, H′) � P ′ . �
u

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 231
Fig. 2. Non-interleaving vs. interleaving diamond distinguished through different location labels.

In words, a prefix location s[P][P ′] provides a path s ∈ {0, 1}∗ to an input/output prefixed subterm P through the abstract
syntax tree, with 0 and 1 referring to the left respectively right component of a parallel composition, and P ′ being the
residual sub-term after the transition. A location label of the form s〈0s0[P0][P ′

0], 1s1[P1][P ′
1]〉 provides two prefix locations,

sisi[Pi][P ′
i] ∈ L for i ∈ {0, 1}, identifying the location of the output and the input prefix interacting in a communication

action.
The location labels identify the location of the prefixes in the term contributing to a transition and allowing to infer

structural (CCS-like) events and causalities following the approach in [33]. The extrusion histories keep track of the location
of extrusion and reception of names. As we will prove later, if one ignores extrusion histories and location labels, the
semantics is almost the standard early semantics. The only difference is in the labelling of actions in the open rule, where
we do not add the extruded name to the label as in the standard semantics. There are two reasons for doing this, as will
become clear later: Firstly, since the extruder histories capture the extrusion, there is no need for recording it in the label.
Secondly, if the extruded name is recorded in the label, the same event can occur in the transition system two places with
different labels. That is, the labelling of events will not be unique and we could not give a direct semantics in terms of
standard labelled asynchronous transition systems.3

The extrusion histories are defined formally as follows.

Definition 2.7 (Extrusion histories). A history H ⊆N ×L is a relation between names and prefix locations. An extrusion history
(H, H) is a pair of histories, referred to as the output history and input history respectively. The output history H records for
each extruded name the locations of the prefixes that extruded it. The input history H records for each name n received by
an input prefix the locations of the input prefixes that received the name. Let dom(H) = {n | (n, u) ∈ H}, i.e. the set of names
recorded in the history.

To manipulate histories we define the following operations.

Definition 2.8 (Operations on extrusion histories). For a history H ⊆N ×L and i ∈ {0, 1}, let

• iH = {(n, iu)|(n, u) ∈ H},
• [ǐ]H = {(n, u) | (n, iu) ∈ H},
• [i]H = {(n, iu) | (n, iu) ∈ H},
• [ε̌]H = H.

We may apply the above operations on histories several times and abbreviate them by a string, as in the example [0̌s]H =
[0̌][š]H with s a possibly empty location string.

We now describe the use of locations and histories to capture structural and link dependencies in the semantics.

2.3. Structural dependencies

We begin with an example showing how locations are used to record the difference between the choice between inter-
leavings of two actions and the parallel execution of two structurally independent actions.

Example 2.9 (Non-interleaving vs. interleaving). Fig. 2 shows the transition semantics of the Pi process a〈a〉.b〈b〉 + b〈b〉.a〈a〉
(“a〈a〉 then b〈b〉 or b〈b〉 then a〈a〉”) to the left and the Pi process a〈a〉 || b〈b〉 (“a〈a〉 and in parallel b〈b〉”) to the right,

3 In this case one would e.g. need to use an equivalence over the action labels which would have complicated the technical development in several
places.

232 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
enriched with locations under the transition arrows. If one can only observe the transitions and action labels then it is not
possible to tell the difference. However, the location labels under the transitions make it possible to see that in the process
to the left, all transitions are due to different prefixes located at the top location, while in the process to the right, the
two a-transitions are due to the same prefix at the location u1 and the two b-transitions are due to the same prefix at the
location u2. Finally, the 0 and the 1 in the paths of location u1 and u2 show that the two locations are in two different
components of a parallel composition. This is the basis for defining events and the structural independence relation on
events below.

From the locations we define our first notion of structural events and independence, which correspond to the events
respectively independence relation defined for CCS in [33]. We will later show how to take into account the additional link
causal relationships of the pi-calculus.

Definition 2.10 (Structural events). Let Ev = {(α, u) | ∃P , P ′, H, H, H′
, H′ : (H, H) � P

α−→
u

(H
′
, H′) � P ′} be the structural events.

For e = (α, u) ∈ Ev define Loc(e) ⊆{0, 1}∗ , the locations where e occurs, by

Loc(e) =
{

{s} if u = s[P][P ′]
{ss0, ss1} if u = s〈s0[P0][P ′

0], s1[P1][P ′
1]〉.

Note that to keep locations of action prefixes fixed, we cannot assume the usual structural congruence making parallel
composition commutative. Therefore we must use two rules (pari), i ∈ {0, 1}, for parallel composition and two rules (comi),
i ∈ {0, 1}, for communication.

Example 2.11 (Associativity and commutativity break location labels). Often in presentations of pi-calculus one considers struc-
tural rules like for the parallel composition being commutative and associative. We cannot have such structural rules because
of how we create the location labels of the events and how we define the independence relation on events in Defini-
tion 2.12. For the commutativity of parallel composition we can easily see how our labels do not work any more, in the
example process P = a〈a〉 || b〈b〉. Here we can get the event e = (a〈a〉, 0[a〈a〉][0]) for the transition on channel a. If we had
a structural rule saying that parallel composition can commute, i.e., that the two processes P = a〈a〉 || b〈b〉 = b〈b〉 || a〈a〉 = P ′
are equivalent for the semantic rules, we would see P ′ = b〈b〉 || a〈a〉 executing the same event for the same channel a
but which has a different location label e = (a〈a〉, 1[a〈a〉][0]). This breaks our reasoning about which components execute
which events. For the associativity of parallel consider the process P ′ = (a〈a〉 || b〈b〉) || c〈c〉 where the event for b would be
(b〈b〉, 01[b〈b〉][0]). If we allow the parallel to be associative we could write P ′ = a〈a〉 || (b〈b〉 || c〈c〉) where the event for b
would be (b〈b〉, 10[b〈b〉][0]). These two events again have completely different location labels, though they should be seen
as coming from the same component.

Definition 2.12 (Structural independence). Define an independence relation on locations Il ⊆ {0, 1}∗ × {0, 1}∗ by

(s0, s1) ∈ Il iff (s0 = s0s′
0 ∧ s1 = s1s′

1) ∨ (s0 = s1s′
0 ∧ s1 = s0s′

1),

where s, s0, s1, s′
0, s

′
1 ∈ {0, 1}∗ . Define the structural independence relation on events Is ⊆ Ev × Ev by:

(e, e′) ∈ Is iff ∀s ∈ Loc(e),∀s′ ∈ Loc(e′) : (s, s′) ∈ Il.

Note how the definition of independence relation correctly identifies the two events (a〈a〉, u1) and (b〈b〉, u2) from Fig. 2b
as being independent. Thus, the transitions form a correct independence diamond in the sense of labelled asynchronous
transition systems (see definition later). Moreover, the four events from Fig. 2a are not independent as they all have the
same location path identified by the empty string. Working in this way with location labels also handles correctly recursion
as explained nicely in [33, Fig. 2].

2.4. Link dependencies

The structural independence relation Is as defined on structural events above misses the link dependencies resulting
from extrusion of names. The following example shows a simple link dependency and how it is captured by the extrusion
histories and refining the events.

Example 2.13 (Simple link dependency). Consider the process

(νn)(a〈n〉 ||n(x)),

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 233
({(n, u)},∅) � 0 ||n(x)

n(m)

u′

(∅,∅) � (νn)(a〈n〉 ||n(x))

a〈n〉
u

({(n, u)}, {(m, u′)}) � 0 ||0

Fig. 3. Simple link dependency described in Example 2.13, where u = 0[a〈n〉][0] and u′ = 1[n(x)][0].

with its behaviour pictured in Fig. 3. According to Is the two events e = (a〈n〉, u) and em = (n(m), u′), for u = 0[a〈n〉][0] and
u′ = 1[n(x)][0], are structurally independent.4 The semantics, however, does not allow the input event to happen until after
the name n has been extruded by the output event. As also observed in e.g. [17,20], there is a link dependency between
the extruding output and the input. The extrusion histories allow for capturing the link causalities of the pi-calculus. Only
the output history is needed to capture the link causality in this simple example. Initially, the input and output histories are
empty, i.e. H = H = ∅. The (open) rule records the extrusion of the name n in the output history, resulting in the extrusion
history ({(n, u)}, ∅). For now we can ignore the complicated pre-conditions of the (par) rule, since when H = H = ∅ it
follows that [ǐ]H = H ′′ = [i]H = ∅. For the following input transition, the (in) records the location of the prefix receiving the
name, which we will need to handle the more complex situations of parallel extrusion possible in the late semantics to be
explained below. To capture the link dependency from the events (and ensure proper splitting of events, to be explained
later) we enrich in Definition 2.18 below the location under the transitions to include also the location u where the name

n was extruded (as recorded in the output history): ({(n, u)}, ∅) � 0 || n(x)
n(m)−−−−−→

u′{(n,u)}
({(n, u)}, {(m, u′)}) � 0 || 0. This extra

information is used to split events and refine the structural independence relation to a causal independence relation, as
defined formally in Definition 2.20. The causal independence relation does not relate the two events e = (a〈n〉, u) and
e′

m = (n(m), u′{(n, u)}), since the latter can be seen to be link dependent on the first.

Extrusion of names in the above example is immediate in the (open) rule. However, as shown by the next example, other
events in parallel, under the same scope, may also be extruders, and we capture this in the (par) rule. We will refer to the
immediate extruders inferred by the (open) as initial extruders and to the latter as possible extruders.

Example 2.14 (Parallel extruders). Consider the process (νn)(a〈n〉 || (b〈n〉 || n(x))), which has two independent parallel ex-
truders a〈n〉 and b〈n〉. According to Definition 2.10 we have the three structural events ea = (a〈n〉, 0[a〈n〉][0]), eb =
(b〈n〉, 10[b〈n〉][0]), and em = (n(m), 11[n(x)][0]).5 The event em for the input action is structurally independent of both
output events, but it cannot happen before at least one has happened.

If we only captured extrusions in the (open) rule, the output history after the two output actions would be
{(n, 0[a〈n〉][0])} if the output transition on the name a is taken first, but {(n, 10[b〈n〉][0])} if the output transition on the
name b is taken first. This means that the resulting state would depend on the order, and thus contradict that the two events
are independent. The set H ′′ in the premise of the (par) rule records the parallel extruders. Let’s assume the output tran-

sition on the name a is taken first, giving the transition (∅, ∅) � (νn)(a〈n〉 || (b〈n〉 || n(x)))
a〈n〉−−→

u
({(n, u)}, ∅) � 0 || (b〈n〉 || n(x))

for u = 0[a〈n〉][0]. When inferring the following output transition on the name b we get

({(n, u)},∅) � 0 || (b〈n〉 ||n(x))
b〈n〉−−→

u′ ({(n, u), (n, u′)},∅) � 0 || (0 ||n(x))

for u′ = 10[b〈n〉][0] using the (par1) rule. To see this, note that we have in the conclusion of the rule H = {(n, u)}, H = ∅,
α = b〈n〉 and iu = 10[b〈n〉][0]. The transition is then inferred from the following premises H ′′ = {(n, 0[b〈n〉][0])}, because
∃a.α = a〈n〉 and n ∈ dom([0]H) and there is no (n, l) ∈ H ∪ H = {(n, u)} such that l|{0,1} ≺ 10[b〈n〉][0]. The condition that
there is no (n, l) ∈ H = {(n, u)} such that l|{0,1} ≺ 10[b〈n〉][0] ensures e.g. that the output transition on the name c in the
following processes is not considered a parallel extruder of the output transition on a: (νn)(a〈n〉 || (b〈n〉.c〈n〉 || n(x))) and
(νn)(a〈n〉 || b〈n〉.(c〈n〉 || n(x))). The condition that there is no (n, l) ∈ H = {(n, u)} such that l|{0,1} ≺ 10[b〈n〉][0] handles a case
where the name has been received before extruded, which is also illustrated in Example 2.16. In the context of the present
example, it means that the output transition on the name c in the following processes: (νn)(a〈n〉 || (b(m).c〈n〉 || n(x))) is not
considered a parallel extruder of the output transition on a, if the name received on b is the previously extruded name n.

Now, we want that the following input on n is disjunctively dependent on the two extruders, but we cannot have that
in a stable semantics. The solution is to split the input event em in two events ema and emb , one for each parallel extruder,
i.e. we get from Definition 2.18 the two input transitions

({(n, u), (n, u′)},∅) � 0 || (0 ||n(x))
n(m)−−−−−→

u′′{(n,u)}
({(n, u), (n, u′)}, {(m, u′′)}) � 0 || (0 ||0)

4 Strictly speaking there are infinitely many input events on n, one for each possible substitution x := m.
5 As in the previous example, we in fact have infinitely many input events on n, one for each possible substitution x := m.

234 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
and

({(n, u), (n, u′)},∅) � 0 || (0 ||n(x))
n(m)−−−−−−→

u′′{(n,u′)}
({(n, u), (n, u′)}, {(m, u′′)}) � 0 || (0 ||0)

for u′′ = 11[n(x)][0]. The event ema = (n(m), u′′{(n, u)}) is dependent on the extruder on a and independent of the extruder
on b, while the event emb = (n(m), u′′{(n, u′)}) is dependent on the extruder on b and independent of the extruder on a.
Finally, the two input events will not be independent of each other, since they happen at the same location path.

As shown in Example 2.14 above, instead of a single event em for the input event, we use the extrusion histories to split
the event em in two conflicting events, ema and emb , one causally dependent on output event ea and one dependent on
output event eb . Crafa et al. in [17, Sec. 6] deem the approach of splitting events intractable and instead follow a different
approach by defining a specially tailored, non-stable event structure model incorporating a global set of extruded names.
Our approach, however, works with the standard stable model of asynchronous transition systems (which unfolds to prime
event structures [47, Ch. 10]) since we split events involved in disjunctive causalities using the insights from [17].

The next example illustrates that in an early semantics both names in an input action m(n) may have been previously
extruded. In other words, the early semantics allow a form of conjunctive causality that cannot happen in the late semantics.

Example 2.15 (Link dependency on two names in one action in early semantics). Consider the process P = (νn)(νm)(a〈n〉 || (b〈m〉 ||
m(x))) from which there are two extruding outputs on channels a respectively b of the names n respectively m. We now
may have an input action with label m(n) that depends on both extruders. We also have input actions with labels m(n′) for
n
= n′ that only depend on the extruder at location 10[b〈m〉][0]. In the late semantics, we only have the latter situation,
since the name being input can not be a previously extruded name.

We illustrate the use of the input history in Example 2.16.

Example 2.16. Consider the process P = (νn)(a〈n〉 || b(x).c〈n〉). Starting with empty histories, we have the two transitions

1. (∅, ∅) � P
a〈n〉−−−−−→

0[a〈n〉][0]
({(n, 0[a〈n〉][0])}, ∅) � P1, for P1 = 0 || b(x).c〈n〉

2. (∅, ∅) � P
b(m)−−−−−−−−−−→

1[b(x).c〈n〉][c〈n〉]
(∅, {(m, 1[b(x).c〈n〉][c〈n〉])}) � (νn)(a〈n〉 || c〈n〉), with m
=n.

After the first transition we may receive either n or an arbitrary name m
= n:

({(n,0[a〈n〉][0])},∅) � P1
b(n)−−−−−−−−−−→

1[b(x).c〈n〉][c〈n〉]
({(n,0[a〈n〉][0])}, {(n,1[b(x).c〈n〉][c〈n〉])}) �(0 || c〈n〉).

({(n,0[a〈n〉][0])},∅) � P1
b(m)−−−−−−−−−−→

1[b(x).c〈n〉][c〈n〉]
({(n,0[a〈n〉][0])}, {(m,1[b(x).c〈n〉][c〈n〉])})�(0 || c〈n〉).

In the first case, a subsequent output of n on channel c will not be an extrusion, since it happens after the input of n from
the environment. In the second case it will, since this output is independent of the extrusion in transition 1. The input
history thus allows the (pari) rules to distinguish between outputs that knew of n before the scope of n was opened and
outputs that learned of n by receiving it after it was extruded.

Finally we illustrate the use of the input history in the (com) rule in Example 2.17 below, based on a process also
appearing in [17].

Example 2.17. Consider the process P = (νn)
(
(a〈n〉 || b〈n〉) || (b(x).c〈x〉 || n(y))

)
given in [17].

The first point to note is that the name n can be extruded by three actions: 1) The a〈n〉 action at location 00[a〈n〉][0], 2)
the b〈n〉 action at location 01[b〈n〉][0] or 3) the c〈n〉 action at location 10[c〈n〉][0] if we first have an internal communication
on the channel b. This means that we have three different events for the input action n(y). The next point to note is that
either a〈n〉 and b〈n〉 are parallel extruders of n or, a〈n〉 and c〈n〉 (after the internal communication on channel b).

To illustrate the use of the input history in the (com) rule, we consider the transition sequence beginning with the
extrusion of n by the action a〈n〉 followed by the internal communication on the channel b. The first transition updates the
output history with the location of the extruding action as follows:

(∅, ∅) � P
a〈n〉−−−−−−→

00[a〈n〉][0]
({(n, 00[a〈n〉][0])}, ∅) � P1, for P1 = (0 || b〈n〉) || (b(x).c〈x〉 || n(y))

The second transition, using the (com) rule, does not update the histories:

({(n, 00[a〈n〉][0])}, ∅) � P1
τ−−−−−−−−−−−−−−−−−−→ ({(n, 00[a〈n〉][0])}, ∅) � (0 || 0) || (c〈x〉 || n(y)).
〈01[b〈n〉][0],10[b(n).c〈x〉][c〈n〉]〉

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 235
Looking at the premises of the rule, we get that the set H ′′ = ∅, since n has not been extruded or received at a prefix of
the location output action b〈n〉. This means that the action c〈n〉 will be detected as a parallel extruder by the definition of
H ′′ in the (par) rule.

Consider now the example process P ′ = (νn)
(
(a〈n〉 || d〈n〉.b〈n〉) || (b(x).c〈x〉 || n(y))

)
and assume again we have executed

the a〈n〉 as the first transition but then also executed the d〈n〉 transition, resulting in the following process H � P ′′ for
P ′′ = (0 || 0.b〈n〉) || (b(x).c〈x〉 || n(y)) and extrusion history

H = ({(n,00[a〈n〉][0]), (n,01[d〈n〉.b〈n〉][b〈n〉])},∅),

having two parallel extruders recorded in the output history.
Now the internal communication using the (com) rule will update the input history:

H � P ′′ τ−−−−−−−−−−−−−−−−−−→
〈01[b〈n〉][0],10[b(n).c〈x〉][c〈n〉]〉

H ′ � (0 || 0) || (c〈x〉 || n(y)) for

H ′ = ({(n,00[a〈n〉][0]), (n,01[d〈n〉.b〈n〉][b〈n〉])}, {(n,10[b(n).c〈x〉][c〈n〉])}),
since H ′′ = {(n, 10[b(n).c〈x〉][c〈n〉])} in the premise of the (com) rule.

The fact that the reception of the name n is recorded in the input history now prevents the action c〈n〉 being treated as
a parallel extruder by the definition of H ′′ in the (par) rule. Finally, note that this example holds for both the early and late
semantics.

Based on the examples above, we refine our transitions and events to also capture link dependencies by enriching the
transitions with a set D , which we call deterministic sub-history, recording the link dependencies for each non-output name
in α, i.e. the past extruding events a name depends on, if it was extruded in the past.

Definition 2.18 (Causal semantics). Define the causal early semantics as the following transitions: (H, H) � P
α−−→

u,D
(H

′
, H′) � P ′

if (H, H) � P
α−→
u

(H
′
, H′) � P ′ and

1. D ⊆ H,
2. (n, l), (n, l′) ∈ D implies l = l′ ,
3. dom(D) = dom(H) ∩ no(α),

where no(α) is the non-output names of α, defined by no(n〈m〉) = {n}\{m}, no(n(m)) = {n, m} and no(τ) = ∅.

The set D contains only one entry per name, even if several entries for the same name can be found in the history
(coming from multiple extrusions). Moreover, D is a largest such set. In consequence, several D sets can be extracted from
the same transition, thus multiplying the number of causal transitions according to the different ways names could have
been extruded. Note that the histories and processes are not changed by the above definition.

Proposition 2.19. The causal semantics is more fine grained than the structural semantics of Fig. 1 in the sense that:

1. if (H, H) � P
α−→
u

(H
′
, H′) � P ′ then ∃D ⊂H s.t. (H, H) � P

α−−→
u,D

(H
′
, H′) � P ′;

2. if (H, H) � P
α−−→

u,D
(H

′
, H′) � P ′ then (H, H) � P

α−→
u

(H
′
, H′) � P ′ was derived using the rules of Fig. 1.

Proof. Trivial (note that D may be ∅). �
The link dependencies D allow us to define the final notion of events and independence relation for the causal semantics.

Definition 2.20 (Causal independence). Let the set of events Ev be defined by:

Ev = {((α, u), D
) ∈ Ev ×H | ∃P , P ′,H,H,H

′
,H′ : (H,H) � P

α−−→
u,D

(H
′
,H′) � P ′}

Two events ei = (e′
i, Di) ∈ Ev for e′

i = (αi, ui) and i ∈ {0, 1} are independent, written e0 Ie1, iff

e′
0 Is e′

1 ∧ �n : Di(n) = u1−i for i ∈ {0,1}.

236 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
Note that from the irreflexivity of the structural independence relation Is , two events (e, D) and (e, D ′) that only differ
on the splitting sets, i.e. D
= D ′ , can never be independent.

We now briefly summarise the rules in Fig. 1.
The (in) rule is the standard early input rule, substituting a received name n for the parameter x in P , yielding P ′ =

P {x := n}, and enriched by recording the location u = [a(x).P][P ′] on the transition. Moreover, the rule takes care to add
the name n to the input history H.

The (out) rule is the standard output rule, enriched by bookkeeping the location u = [a〈n〉.P][P ′] on the transition.
The (open) rule is standard, except the location is recorded for the extruded name n in the output history and not in the

action label, as is customary for the standard pi-semantics. Avoiding name extrusions in the labels ensures unique labels for
events in Section 4, and only one (com) rule. Otherwise, if we were to follow the pi-calculus conventions and have different
action labels we would need to complicate the technicalities by adding a notion of equivalence of events (which would
equate action labels with and without bound names), and proving results such as the independence relation has to respect
this event equivalence (this more complicated approach can be seen in the technical report [35]).

The (scope), (rep) and (sum) rules are the standard rules, just extended to retain locations and histories.
If we do not consider the locations and histories, the (pari) rules, for i ∈ {0, 1}, are the standard left and right parallel

rules, except that we need to extract the possibly extruded name from the histories by the set b̃ = dom(H
′
i)\dom([ǐ]H), and

not from the action label α. The location label is extended by prefixing with i ∈ {0, 1}, to record in which component of
the parallel composition the action happened. The extruders recorded in the set H

′′
capture exactly the parallel extrusion

illustrated in Example 2.14. Specifically, an output location is added to the output extruder history, if the name has been ex-
truded in the other parallel component and not previously extruded (recorded in the output history) nor received (recorded
in the input history) by the current component.

Finally, if we again ignore histories and locations, the (comi) rules are the usual communication rules combined with the
close rule, closing a scope previously opened by an (open) rule. The combination is by abuse of notation, writing (ν∅)P for
P when there is the communication of a free name (in the same style to how the standard (close) rule for communication
of a bound name). The location label is made into a pair, recording the two prefixes taking part in the communication.
Looking at the histories, we discard any changes to histories formed in each component and only forward input histories
from the sender to the receiver via the set H′′ .

3. Correctness results and discussion of difference between late and early semantics

In this section we prove two correctness results for our semantics and in the end we remark on the difference between
late and early semantics. The first correctness result shows that the standard interleaving, early operational semantics of
pi-calculus recalled in Definition 2.2 can be obtained from the rules in Fig. 1 by ignoring the locations (Lemma 3.5) and
histories (Lemma 3.2) and extracting only the scope extrusion from the histories. The result is stated as a bisimulation
Corollary 3.8 from the two results of Proposition 3.6 which shows that every transition from pi-calculus is preserved in our
semantics, and Proposition 3.7 which shows that our semantics does not introduce more transitions. The second correctness
result from Theorem 3.9 shows that our semantics is a conservative extension of the one for CCS given in [33].

Definition 3.1 (Generated transition system). The operational rules for pi-calculus that we gave in Fig. 1 generate a transition
system TS = (S, E, T) in the following way.

• The set of states contains pairs of a history and a process term, denoted (H, H) � P :

S
�={(H,H) � P | P ∈ Proc, (H,H)∈H×H},

with Proc as in Definition 2.1 and histories from Definition 2.7;
• E = Ev are the events from Definition 2.20 which label the transitions;
• T ⊆ S × E × S are the transitions from Definition 2.18.

For some particular process P we add an initial state (∅, ∅) � P and work only with the transition system reachable from
this initial state, denoted TS(P), and defined as the restriction TS|S P of TS to only the states

S P = {(H,H) � P ′ | (∅,∅) � P −→∗ (H,H) � P ′},
with −→∗ being the reflexive and transitive closure of the transition relation T .

We prove that in our semantics the histories do not affect the enabling of a standard π transition. The statement of
Lemma 3.2 is on transitions directly derived from our semantic rules of Fig. 1 but it extends to causal semantics transitions
(i.e., split transitions) as in Definition 2.18 due to Proposition 2.19.

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 237
Lemma 3.2 (Histories in semantics). For a process P , if there exists a history (H, H) such that there exists a transition (H, H) � P
α−→
u

(H
′
, H′) � P ′ then for any history (Hv , Hv) we can find the same transition (Hv , Hv) � P

α−→
u

(H
′
v , H′

v) � P ′ .

Proof. We use induction on the length of the derivation tree for the given transition. We look at the last rule application
(the root of the derivation tree), and show that we can apply it also to the different histories (Hv , Hv).

The base cases for rules (in) and (out) are easy since the histories are not influencing the decision of the transition
(neither the action label nor the location label). The (in) rule updates the resulting input history though, but this has no
bearing on our lemma.

We take now cases.

1. For rules (rep), (sum), and (scope), we see that a general history H = (H, H) is propagated, unchanged, from the con-
clusion of the rule to the hypotheses. This allows to apply the induction hypothesis thus allowing to replace the history
with any history (Hv , Hv). Moreover, the adjacent requirements of these rules (when any) do not involve the history
information.

2. For rule (open) the left-side history is just propagated to the hypothesis, and the adjacent requirements do not involve
the history. This allows to apply the induction hypothesis as before. The output history is changed though, but of no
importance here.

3. For rules (pari) the argument uses the induction hypothesis and also the fact that we can derive one transition with
some history (H, H) from the process P0 || P1. We prove that we can derive the same transition from any other history
and the same process (Hv , Hv) � P0 || P1. From the fact that we can derive one transition it means we can derive from
the component process ([ǐ]H, [ǐ]H) � Pi

α−→
u

(H
′
i, H′

i) � P ′
i . By the induction hypothesis this means we can derive the same

transition from any output history, including the empty history as well as the history [ǐ]Hv . This means that for the
outcome of the lemma we have the existence of the transition that is required by the (pari). The other requirements
of this rule do not influence its application, with one exception. In particular, the construction of H

′′
is only used to

update the output history on the right side of the derived transition.
The exception is the fact that we need to check that no names from the other component process appear in the output
history changes (i.e., in b̃ = dom(H

′′′
i)\dom([ǐ]Hv)). The intuition of b̃ is that it keeps the names that were opened, which

in standard pi-calculus are called bound names in the action label. However, these bound action names are derived only
from the process, and the history does not influence them. In other words, the changes in the domain of the output
histories that b̃ records are the same for any history. Therefore, since we already know from the existing transition that
(dom(H

′
i)\dom([ǐ]H)) ∩ fn(P j) = ∅ this would hold for our arbitrary history as well dom([ǐ]Hv). Formally this is proven

using induction on the derivation as the following Lemma 3.3.
4. The same argument as for (par) works for (com) rules, only that we need to apply two times the induction hypothe-

sis. �
Intuitively, the proof of Lemma 3.2 makes clear how only the process term is needed when deciding the existence of a

transition, and the histories are only used to keep track of which names have been extruded, so that the (comi) rules can
close the scope if needed. For the standard pi-calculus this is kept in the action label as the bound name of the action.
Otherwise, histories are used in Definition 2.18 to split transitions.

The following two lemmas prove some simple observations which are used in several places throughout the paper,
sometimes without explicit mention. Lemma 3.3 intuitively states that change in the domains of the output histories in a
transition is the same irrespective of the left-side histories.

Lemma 3.3. Consider a transition (H, H) � P
α−→
u

(H
′
, H′) � P ′ derived with the rules from Fig. 1. For any histories H1, H

′
1, H1, H′

1 s.t.

the same transition is possible, i.e., (H1, H1) � P
α−→
u

(H
′
1, H′

1) � P ′ we have dom(H) \ dom(H
′
) = dom(H1) \ dom(H

′
1).

Proof. We use an inductive argument based on the derivation tree for the transition, and look at the last rule application
in cases.

The base cases are for (in) and (out) for which the output histories are not changed by the transition, thus proving the
claim trivially.

For the induction cases (rep), (sum), and (scope), just apply the induction hypothesis trivially, since the histories are
copied from the hypothesis of the rule.

The case for (open) changes the output history by adding the name n. However, since this name was coming from under
a restriction operator (ν) it means the name cannot appear in any other component of the process. Therefore, the name n
cannot appear in the left-hand history either; and for any other history we have to the left it would not contain n either,
when this rule is applicable.

238 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
The case for (pari) is more complex since this transition changes the output histories in two ways. First, names at the
current location are replaced (i.e., [i]H are removed) with the ones that the component transition outputs (i.e., iH

′
i are

added). This respects the claim by applying the induction hypothesis, which says that b̃ = dom(H
′
i) \ dom([ǐ]H) remains the

same irrespective of H; therefore, the same holds for dom(iH
′
i) \ dom([i]H), which is the same set of pairs as b̃ only with

the locations prefixed by i, hence having the same domain. Second, it adds pairs in iH
′′

which contains only those names
that have previously been in the dom(H) because of the restriction n ∈ dom(iH

′′
) if n ∈ dom([j]H) ⊆ dom(H).

The case for (comi) is trivial, as the output histories are copied from the left to the right side of the conclusion ignoring
what they might have been in the hypothesis. �
Lemma 3.4. For any rule from Fig. 1 and the transition that it derives (H, H) � P

α−→
u

(H
′
, H′) � P ′ , if for the left side of the transition

we have dom(H ∪ H) ∩ bn(P) = ∅ (ensured by the requirement in the caption of Fig. 1) then we have dom(H
′ ∪ H′) ∩ bn(P ′) = ∅ for

the right side of the transition as well.

Proof. The proof is done by induction on the derivation tree.
The base case for (out) rule is trivial since this does not change the histories. Whereas for the (in) rule the input history

is changed by adding the name that is received. But this is fine since this name cannot appear bound in neither the process
before nor the one after.

The induction case for the rules (scope), (rep), and (sum) is immediate by the induction hypothesis since the histories
below the derivation line are the same as the ones above.

The (open) rule adds to the output histories the name n but removes the restriction operator on this name from the
process before the transition. The induction hypothesis then finishes the proof.

For the (com) rules we need to prove that

dom(H ∪ H ∪ jH′′) ∩ (bn(P ′
0 || P ′

1) ∪ b̃) = ∅,

knowing that dom(H ∪ H) ∩ bn(P0 || P1) = ∅. Since H′′ contains only names that appear in [i](H ∪ H) we thus have dom(H ∪
H ∪ jH′′) = dom(H ∪ H). The requirement dom(H ∪ H) ∩ bn(P0 || P1) = ∅ also implies that dom([ǐ]H ∪[ǐ]H) ∩ bn(Pi) = ∅, which
allows to apply the induction hypothesis to derive also dom(H

′
i ∪ H′

i) ∩ bn(P ′
i) = ∅. Since b̃ = dom(H

′
i)\dom([ǐ]H), this also

means that b̃ ∩ bn(P ′
i) = ∅ and that b̃ is fresh for the histories H ∪ H. This means that (A) dom(H ∪ H ∪ jH′′) ∩ b̃ = ∅. Since

bn(P ′
0) ⊆ bn(P0) and bn(P ′

1) ⊆ bn(P1) we also have (B) dom(H ∪ H ∪ jH′′) ∩ bn(P ′
0 || P ′

1) = ∅. Thus, from (A) and (B) we have
the proof.

Take one rule (par0), as the argument is analogous for the other, and we prove that dom(
(
(H \ [0]H) ∪ 0H

′
0 ∪ 0H

′′ ∪ (H \
[0]H) ∪ 0H′

0

)
) ∩ bn(P ′

0 || P1) = ∅. We take each set from the sequence of unions. For H \ [0]H since it removes all names
starting with 0 this will not contain bound names from P ′

0 either. From the assumption on the left of the transition, we
know that the remaining names are not in P1 either. The same argument goes for H\[0]H. Now use the induction hypothesis
to deduce that H

′
0 ∩ bn(P ′

0) = ∅ as well as H′
0 ∩ bn(P ′

0) = ∅. Note that adding the digit 0 keeps the domains the same. We
are left with H′′

which we know it is a subset of [1]H and does not already appear to have been part of the histories coming
from the P0 component. Therefore, by the assumption we also have that H

′′
does not have names in the bound names of

neither P1 nor in P ′
0. �

In order to compare our semantics with the standard one for pi-calculus we still need to show how the location labels
can be ignored, since these can be determined solely from the two process terms involved in the transition.

Lemma 3.5 (Location labels are determined). Whenever we have a transition (H, H) � P
α−→
u

(H
′
, H′) � P ′ then the location label u is

unique, i.e., determined by P and P ′ .

Proof. We generate the location u in the derivation tree of the transition. We assume inductively that the shorter tree
generates a unique label. We then look at the structure of P and P ′ , and consider cases on the last rule applied at the root
of the derivation tree.

• If P = a〈n〉.P ′
0 or P = a(n).P ′

0 then we know from (out) respectively (in) that u = [a〈n〉.P ′
0][P ′

0] respectively u =
[a(n).P ′

0][P ′
0] are unique. This forms the base case of the induction.

• If P = P0 || P1 and P ′ = P ′
0 || P1 then we know that (par0) rule is applied at the root and it adds to the location label

u = 0v where v is the unique label obtained from the proof of the P0 branch. Similarly we find u = 1v if P ′ = P0 || P ′
1

using (par1).
• If P = P0 || P1 and P ′ = P ′

0 || P ′
1 we know that (com) rule is applied and that u = 〈0u0, 1u1〉, which is uniquely obtained

by continuing up each branch finding the unique u0 for the P0 part and u1 for the P1 part.

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 239
• If P is of any other process type then the respective application of the remaining rules just copy the location labels. �
Proposition 3.6 (Pi-calculus semantics is preserved). For a pi-process P whenever we have a transition P α−→π P ′ then we have in our

semantics a transition (∅, ∅) � P
α′−→
u

(H, H) � P ′ for some determined location label u and history (H, H), and when α = (νn)m〈n〉
then α′ = m〈n〉 otherwise α′ = α.

Note that Proposition 3.6 claims the transition starting with the empty history, but then Lemma 3.2 allows any histories
to be used. Lemma 3.5 tells how the location label u is determined.

Proof. We use induction on the derivation tree and show how for each rule application in the pi-calculus we find rules
applied in our semantics which return the required process.

It is easy to see how when the pi-rules (inp) and (out) are applicable, then the respective rules in Fig. 1 are also
applicable to the empty histories, and the output process as well as the action label are the same as in the pi-rule. In the
rules from Fig. 1 we update the input history in the (in) rule, and create the respective location labels.

The pi-rule (bang) is the same as our rule (rep). The same for the pi-rule (res) with its requirements which appear
the same in our rule (scope). The pi-rule (sum) is as our rule. To all these the resulting processes are exactly the same.
Moreover, the histories are not even changed, neither the location labels.

The pi-rules (par), (com), and (open) are manipulating the same processes as our respective rules from Fig. 1, and the
respective requirements can be correlated. In our case we manipulate histories and construct location labels.

In particular, the (open) rule from Fig. 1 has the same requirement on the name n
= a and it changes the output history
to record the bound name that was output from under a scope, thus opening it. In the pi-rule this bound name is recorded
in the action label, which in their case changes to (νn)a〈n〉. This is why the statement of this proposition captures this
distinction between action labels.

For the pi-rules (par) the requirement bn(α) ∩ fn(Q) = ∅ is captured in our (pari) rules by b̃ ∩ fn(P j) = ∅ where b̃ is
stored in the output history.

For the pi-rule (com) note that the output action has no bound name, and thus no restriction operator is surrounding
the parallel process. In our (com) rules this implies that b̃ = ∅, and we use the syntactic sugar (ν∅)P0 || P1 instead.

Otherwise, for the pi-rule (close) in our rules the b̃
= ∅ and thus the restriction operator will be exactly as in the pi-rule.
One last aspect that we need to show is that the histories do not prohibit transitions which otherwise are allowed in

the pi-calculus transition system. This was done in Lemma 3.2. �
Proposition 3.7 (No extra transitions). For a process P whenever we have a transition in our semantics (H, H) � P

α−→
u

(H
′
, H′) � P ′

then we find the transition in the standard pi-calculus semantics P α′−→π P ′ with α′ = (νn)α if dom(H
′
)\dom(H) = {n} and α′ = α

otherwise.

Proof. Consider our operational rules from Fig. 1 and use induction on the derivation tree to show that for each rule applied
in our semantics when we remove the histories and location labels than either the same rule is applicable in the pi-calculus
or we find other rules applied which return the required process. The reasoning is very similar to what we did in the proof
of Proposition 3.6.

The only special aspect is the fact that we need to extract from the output history the action label when this needs to
have a bound name, as coming from the (open) rule. �

Combining Propositions 3.6 and 3.7 we now get the following corollary stating the conformance of our semantics with
the standard early pi-semantics.

Corollary 3.8 (Conformance w.r.t. pi-calculus). For any process P the generated transition system reachable from this process in the
standard pi-semantics TSπ (P) and our semantics TS(P) are bisimilar in the following sense. There exists a relation R containing pairs
of the form (P ′, H � P ′), where H = (H, H) is an extrusion history and such that

• (P , (∅, ∅) � P) ∈ R

• If (P , H � P) ∈ R and ∃α, P ′ : P
α−→π P ′ then ∃H ′ : H � P

α′−→
u

H ′ � P ′ where α′ = m〈n〉 if α = (νn)m〈n〉 and otherwise α′ = α.

• If ∃H ′, P ′ : H � P
α−→
u

H ′ � P ′ then there exists P α′−→π P ′ where α′ = (νn)α if H = (H, H), H ′ = (H
′
, H′) and dom(H

′
)\dom(H) =

{n} and otherwise α′ = α.

We now show that the non-interleaving semantics is a conservative extension of the one for CCS given in [33]. To this
end, consider as equivalent to CCS the sub-calculus of the pi-calculus obtained by allowing only input and output prefixes

240 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
in which the subject and object are the same, i.e. of the form n(n) and n〈n〉, referred to as the CCS subset. In this case it
is easy to see that the output histories and link dependencies D are always empty and thus the independence relation and
events coincide with the structural independence and events.

Theorem 3.9 (Conservative extension). For the CCS subset of the pi-calculus, the non-interleaving semantics of Fig. 1 is bisimilar to the
non-interleaving semantics for CCS given in [33].

Proof. To be precise, the CCS calculus from [33] builds processes using the grammar:

P CC S ::= �i∈Iϕi .P
CC S
i | (νn)P CC S | P CC S || Q CC S | x | rec x.P CC S with ϕ ∈ {α,α | α ∈ N }.

They use recursive definitions instead of our replication construct; but these are encodable, e.g., see [2, Def. 6], so we will
not be concerned with this. Otherwise, the difference is in their action prefixes which are only names of the two kinds
output/input. Therefore, this forms a subset of the pi-calculus that we considered in Definition 2.1 when we allow only
output/input with the same subject and object, i.e., n〈n〉 \ n(n). See a nice comparison of CCS and pi-calculus in this sense
as psi-calculi instances in [4]. The proof is then formed of the following observations.

1. the output histories are always empty;
2. the link dependencies D are always empty, thus events are never split;
3. the independence relation and events coincide with the structural independence and events;
4. any transition in the CCS semantics is matched by the same transition in our semantics of Fig. 1, and the other way

around.

To prove these we investigate our semantic rules, and discuss how these relate to the semantic rules from [33], which
we do not reproduce here as they are revealed from our comparative arguments.

1. For the first statement we look at the transition rules (pari) and (open), as these are the only rules that add to the
output histories. The rule (in) adds to the input history, which is used in the (pari) rules to determine what to add to
the output histories. The (open) rule is not applicable since it requires for an output prefix a〈n〉 that n
= a, which does
not hold for the prefixes that are allowed in the CCS instance. The extra names added in the (pari) rules depend on
previously added names by the (open) rule, i.e., see the condition for forming the H′′

set in (pari) rules. Since these are
empty, then (pari) rules do not add any new names either.

2. Since output histories are empty, and in Definition 2.18 the link dependencies set D is created from the histories as
D ⊆ H, this statement is trivially proven.

3. This is easy to see from the previous part 2 since Ds are always empty, then in Definition 2.20 an event
(
(α, u), D

) =
(α, u) as in Definition 2.10. Also, the split transition from which the causal events are extracted (H, H) � P

α−−→
u,∅ (H

′
, H′) �

P ′ is the same as the transitions (H, H) � P
α−→
u

(H
′
, H′) � P ′ given by our semantic rules of Fig. 1. As the link depen-

dencies are empty, then the second part of the definition of independence relation in Definition 2.20 is trivial, thus I
becoming just the structural independence Is as in Definition 2.12, which is that of CCS from [33].

4. We already observed that (open) is never applicable, which implies that the “close” part of the (comi) rules is not
applicable (i.e., when the b̃
= ∅ and thus a restriction operation is moved from the parallel component with the out-
put prefix to the whole parallel composition process). Otherwise, the remaining (comi) rules are the same as in [33],
building the same location label, since our restriction about names is vacuously satisfied for CCS.
Also note that the (in) and (out) rules are always applicable as the immediate rule on top of the (sum) rule. Therefore,
we can view these three rules as the single SUM rule from [33] which is also performing the action, and exhibiting the
respective output/input action name on the transition. However, the location label that we build in this case contains
only the branch process, whereas in [33] it contains the whole summation process. This is fine for our proofs, and does
not interfere with the deduced transitions.
The (scope) rule is the same as the RES rule from [33], also with the required restriction, only that in the location label
we do not need to record the name that is bound by the restriction operator as [33] needs.
For the (pari) rules our restriction on names is vacuously satisfied, and the location label is updated exactly as in [33].
We do not discuss the (rep) rule.
The above observations make it clear that whenever from a P CC S process one can derive a transition in the semantics of
[33], we can also derive the same transition, with the same action label, and analogous location label in our semantics.
The location label in our case does not contain bound names, and contains in the last process part of the label only
the summation branch. However, these location labels do not contribute in [33] to deciding which transitions can be
derived. The opposite is also true, i.e., in our semantics we cannot derive a transition which the semantics of [33]
cannot derive also. �

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 241
Remark 3.10 (Late version of our semantics). The transition for the input prefix generated by the (in) rule in the standard
early semantics (see Definition 2.2) contains a concrete name m, which is substituted for the parameter x. Assuming that
all bound names are unique and different from all free names, one can define the transition for the input prefix generated
by the (in) rule in the late semantics simply by removing the substitution. The resulting process P will thereby contain the
name x as a fresh free name. In the late semantics, the substitution is then performed in the (com) rule. A late style version
of the rules in Fig. 1 will be obtained by replacing the (in) and (comi) by the following rules (for clarity we only give the
(com0-late) rule replacing (com0)):

u = [a(x).P][P]
(in-late)

(H,H) �a(x).P
a(x)−−→

u
(H,H) �P

H′′ = {(n, v1) |
∃(n, l) ∈ [0](H ∪ H) : l|{0,1} ≺ v0}

([0̌]H, [0̌]H) �P0
a〈n〉−−→
v0

(H
′
0,H′

0) �P ′
0

b̃ = dom(H
′
0)\dom([0̌]H)

b̃ ∩ fn(P1) = ∅
([1̌]H, [1̌]H) �P1

a(x)−−→
v1

(H
′
1,H′

1) �P ′
1

(com0-late)

(H,H) �P0 || P1
τ−−−−−−→〈0v0,1v1〉 (H,H ∪ 1H′′) �(νb̃)(P ′

0 || P ′
1{x := n})

Because of the assumption that all bound names are unique and different from all free names, the received name x in the
input transition with label a(x) will not be identical to any of the names that the extruders output. In consequence, we do
not need to record the received name in the input history in the (in-late) rule. Also, the case in Example 2.16 where the
previously extruded name is received can not happen in the late semantics.

However, the input histories are still needed to keep track of names that are being received during communications.
A new variant of Example 2.16 shows this and how (com0-late) still updates the input histories. Consider the process
P = (νn)(a〈n〉.b〈n〉 || b(x).c〈x〉) for which after an output on channel a, the name n is communicated on channel b between
the location 0 and location 1. We still want that in the remaining process 0 || c〈n〉 the output of n on channel c is not
an extruder. This is done as in the early semantics, using the input histories in the (par) rules and updating them in the
(comi-late) rules. In the late semantics, also Example 2.15 does no longer apply. This is captured by changing the definition
of the splitting of events in Definition 2.18 by defining no(α) as no(n〈m〉) = {n}\{m}, no(n(x)) = {n}, i.e. only the subject
(channel name) is considered for link dependencies. No other changes are needed.

The late semantics would thus have less events for two reasons: Firstly, the (in-late) rule will only generate one transi-
tion, for the one (fresh) input n(x), instead of the infinitely many transitions for each possible name m in the action n(m)

produced by the (in) rule. Secondly, the splitting of these events will only depend on the subject and not the object of the
communication. We leave for future work to prove that the above semantics provides an asynchronous transition system
conservatively generalising the non-interleaving late semantics and to study in detail the correspondence between the late
semantics given here and the one in [17]. The two semantics are not identical, since the semantics in [17] does not split
events and thus results in a non-stable semantics.

4. Early labelled asynchronous transition systems semantics of pi-calculus

In this section we show that the operational semantics, events and independence relation given for the pi-calculus in
the previous section yields a labelled asynchronous6 transition system (LATS) as defined in [3,40,47,22] and recalled in
Definition 4.1. LATS are known to satisfy the stability property, that is, every event depends on a unique set of events, and
unfold to standard labelled prime event structures [47, Ch. 7].

Definition 4.1. A labelled asynchronous transition system is a tuple LATS = (S, i, E, T , I, lab, A) where

• (S, i, E, T) is a transition system with S the set of states and i an initial state, E a set of events, and T ⊆ S × E × S the
transition relation;

• lab : E →A is a labelling map from the set of events to the action set A;
• I ⊆ E × E is an irreflexive, symmetric independence relation, satisfying:

1. e ∈E ⇒ ∃s, s′∈ S : (s, e, s′) ∈T ;
2. (s, e, s′) ∈T ∧ (s, e, s′′) ∈T ⇒ s′ = s′′;
3. e1 Ie2 ∧ {(s, e1, s1), (s, e2, s2)} ⊆T ⇒ ∃s3 : {(s1, e2, s3), (s2, e1, s3)} ⊆T ;
4. e1 Ie2 ∧ {(s, e1, s1), (s1, e2, s3)} ⊆T ⇒ ∃s2 : {(s, e2, s2), (s2, e1, s3)} ⊆T .

6 Asynchronous here refers to non-interleaving, not the style of communication.

242 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
The last two conditions ensure that independent events always form interleaving diamonds and imply stability, i.e. unique
cause of events.

Theorem 4.2 (LATS for pi). The semantic rules for the pi-calculus that we gave in Fig. 1 generate a labelled asynchronous transition
system LATS(P) = (Proc, (∅, ∅) � P , Ev, T , I, lab, A) for a pi-process P where

• (Proc, (∅, ∅) � P , Ev, T) is the generated transition system TS(P) reachable from P as in Definition 3.1 with Proc from Defini-
tion 2.1, histories from Definition 2.7, events from Definition 2.20, and transitions from Definition 2.18;

• I is the relation from Definition 2.20,
• lab

(
(α, u), D

) = α,
• α ∈A is the set of labels generated by the grammar α ::= a〈n〉 | a(n) | τ .

To prove this we need several intermediate results and definitions. The following lemma states that the transition system
is event deterministic, i.e. that it satisfies property 2. of Definition 4.1.

Lemma 4.3 (Event determinism). For any two transitions (H, H) � P
α−−→

u,D
(H

′
, H′) � P ′ and (H, H) � P

α−−→
u,D

(H
′′
, H′′) � P ′′ then

(H
′
, H′) = (H

′′
, H′′) and P ′ = P ′′ .

Proof. The events that we are interested in are the ones in Ev obtained through splitting in Definition 2.20. But each split
event is obtained from a transition derived with the rules from Fig. 1 and all splits make transitions between the same
pairs of processes and histories. Therefore we are not interested in the splits but in the kernel event, which is formed of the
first two elements of the three-tuple event, i.e., the action name and the location where the event appears. In consequence,
we show that for some arbitrary event and process (together with some history), there is a unique operational rule that is
applicable. This results in a unique transition, as in the statement of the lemma.

The histories do not contribute to the decision whether an operational rule is applicable or not; and neither do the
histories influence how the resulting process looks like. These facts have been established in Proposition 3.2.

For the rest we use induction on the structure of the location label and the process P , thus identifying which of the
operational rules applies for the particular reduction. The induction is double, depending on how the location label looks
like, cf. Proposition 2.6, i.e., either of type (α, s[P1][P ′

1]) or (τ , s〈s0[P0][P ′
0], s1[P1][P ′

1]〉). We have two base cases.

1. When e = (α, [P1][P ′
1]) only rules (in) or (out) are applicable. Depending on the structure of the process P , or for

the same purpose, depending on α, only one of the two rules applies. The outcome is then determined, thus having a
unique resulting process. The histories are also determined, i.e., for the (out) rule they are the same as on the left of
the transition, whereas for the (in) rule the input history is changed with the name from the action α.

2. When e = (τ , 〈0[P0][P ′
0], 1[P1][P ′

1]〉) (i.e., when the location label is a minimal communication location) only the (com)

rule applies, and the outcome process is unique with respect to the original process P . If P = (νb)Q then the rule
(open) also applies and changes the output action to one having a bounded name b, and the resulting process is also
restricted as (νb)Q ′ with Q ′ determined by the communicating processes. Otherwise, if P is only a parallel composi-
tion, then the resulting process is not under a restriction.

For the induction case we consider that the event has the location

ss′[P0][P ′
0] or ss′〈0s0[P0][P ′

0],1s1[P1][P ′
1]〉

with s ∈ {0, 1}, and any of the s′, s0, s1 may be empty. We take cases after s and for each case we look at the structure
of P and α to determine the rule used. It turns out that each time only one rule applies. Moreover, each rule changes the
histories from the left of the transition in a determined way, ensuring the history equality from the statement of the lemma.

1. For the case when s = 0 we have that
(a) if P = P0 || P1 then the only rule that could have been applied to generate this transition is (par0). From the

induction hypothesis we know that the required transition for this rule, which applies to a shorter location label,
produces the unique process P ′

0, which when composed in parallel produces a unique outcome process P ′
0 || P1.

(b) if P =!P1 then only rule (rep) applies to produce Q || !Q . Further up the derivation tree one of the (par) rules apply.
When s = 0 the (par0) rule produces the unique P ′ || !Q .

(c) if P = (νn)P1 then
i. if α = a〈n〉 then only rule (open) applies,

ii. otherwise only (scope) is applicable.
Further up in the derivation tree we can apply the induction hypothesis on the same location label, but a smaller
process (without the restriction operator), to produce a unique process, thus the whole derivation is unique.

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 243
2. For the case when s = 1 we have that
• if P = P0 || P1 then only rule (par1) applies, and an argument analogous to 1a goes through.
• if P =!P1 then use analogous arguments as for 1b producing the unique Q || P ′ by the induction hypothesis.
• if P = (νn)P1 then use analogous arguments as for 1c.

3. For all location labels and action labels if P = �i∈I : ϕi .Pi then the unique rule application is (sum). Even if two branches
of the sum induce a transition with the same action name but different output process, these will be considered as
different events because of the location label containing different processes at the end. Therefore, the nondeterminism
no longer exists here. The induction hypothesis is applicable further up on the derivation tree to the smaller label as
well as smaller process, to produce a unique outcome.

For the location label ss′〈0s0[P0][P ′
0], 1s1[P1][P ′

1]〉 an inductive argument as before reduces the s and s′ to the case when
they are empty. In this case the only rule that could have created this label is the (com) rule. This implies that P = Q 0 || Q 1.
Using the previous case on Q 0 and location s0[P0][P ′

0] we know that Q 0 uniquely reduces to Q ′
0, and similarly for Q 1 and

the location s1[P1][P ′
1]. Thus Q 0 || Q 1 reduces uniquely to Q ′

0 || Q ′
1 = P ′ . �

To prove that the transition system from Theorem 4.2 satisfies the last two (diamond) properties of a labelled asyn-
chronous transition system we follow the approach from [33].

The following partial function makes precise how a sequence s ∈ {0, 1}∗ identifies a subprocess, called the component, in
a process.

Definition 4.4 (Components). Define inductively the partial function

Comp : {0,1}∗ × Proc ⇀ Proc

1. Comp(ε, P) = P , when P
= !P1 and P
= (νn)P1 (and ε is the empty string)
2. Comp(0s, P0 || P1) = Comp(s, P0)

3. Comp(1s, P0 || P1) = Comp(s, P1)

4. Comp(s, (νn)P) = Comp(s, P)

5. Comp(s, !P) = Comp(s, P || !P)

Corollary 4.5. For any s, s′ ∈ {0, 1}∗ and any process P , whenever Comp is defined, we have

Comp(s,Comp(s′, P)) = Comp(s′s, P).

Proof. The proof follows from Definition 4.4 by induction on the structure of s′ . The base case for s′ = ε is easy by using
Definition 4.4(1); and when P =!P1 or P = (νn)P1 then just apply the respective definitions.

Take s′ = 0s′
0 for which Comp is defined when P is one of P0 || P1, (νn)P0, or !P0. For P = P0 || P1 from Defini-

tion 4.4(2) we have that Comp(0s′
0, P0 || P1) = Comp(s′

0, P0), which implies that the left part of the lemma equality be-
comes Comp(s, Comp(s′

0, P0)). The right part becomes Comp(s′
0s, P0) by applying Definition 4.4(2) as Comp(0s′

0s, P0 || P1) =
Comp(s′

0s, P0). The equality of these last two formulas is given by the induction hypothesis. In the case when P =!P0 then
we first apply Definition 4.4(5) and then we follow the above reasoning verbatim. For the case for P = (νn)P0 we first use
Definition 4.4(4) then follow as above.

The case for s′ = 1s′
1 is analogous, using Definition 4.4(3) for P = P0 || P1 and Definition 4.4(4) for P = (νn)P .

Note that no matter what the structure of s is, the Comp is defined when P =!P0. This then reduces to a process where
only the cases Definition 4.4(2) and (3) could further be applicable. �

From any transition we can deduce the transition in the immediate component responsible for the derivation.

Lemma 4.6 (Decomposing transitions). For s ∈ {ε, 0, 1} and s′ ∈ {ε, 0, 1}∗ we have

(H,H) � P
α−−−→

ss′uε

(H
′
,H′) � P ′ ⇒ ([š]H, [š]H) � Comp(s, P)

α−−→
s′uε

(H
′′
,H′′) � Comp(s, P ′),

with uε either [Pu][P ′
u] or 〈0s0s′

0[P0][P ′
0], 1s1s′

1[P1][P ′
1]〉, and depending on the case we have the following extra properties:

1. when s = 0 we have (dom(H
′′
)\dom([š]H)) ∩ fn(Comp(1, P)) = ∅;

2. when s = 1 we have (dom(H
′′
)\dom([š]H)) ∩ fn(Comp(0, P)) = ∅;

3. when s = ε and P = (νñ)P1 and P1
= (νm̃)P2 , for ñ and m̃ non-empty,7

we either have (ñ ∩ n(α) = ∅ or (∃b ∈ ñ : α = a〈b〉 with a /∈ ñ).

7 By the assumption that all bound names are unique and different from all free names we can prove that all restrictions can be moved to the front of
the process term. Thus we denote by (νñ) the list of all bound names of P .

244 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
Proof. We take cases after s ∈ {ε, 0, 1}.

• When s = 0 the rule that adds 0 to the location label is (par0), therefore we work with the transition (H, H) �
P0 || P1

α−−−→
ss′uε

(H
′
, H′) � P ′

0 || P1. The rule requires that transition ([0̌]H, [0̌]H) � P0
α−−→

s′uε

(H
′′
, H′′) � P ′

0 exists and that

b̃ ∩ fn(P1) = ∅, with b̃ = dom(H
′′
)\dom([0̌]H). Applying Definition 4.4 for deriving components, the above transform into

the expected result, i.e.: ([0̌]H, [0̌]H) � Comp(0, P0 || P1)
α−−→

s′uε

(H
′′
, H′′) � Comp(0, P ′

0 || P1) with (dom(H
′′
)\dom([0̌]H)) ∩

fn(Comp(1, P)) = ∅.

If s = 0 and P =!P s the application of the (rep) rule implies that we have a transition from (H, H) � P s || !P s
α−−−→

ss′uε

(H
′
, H′) � P ′ with the same action, history, and label as the given transition of the statement of the lemma. On

this we can now use the (par0) rule and apply the same argument as above to deduce the transition ([0̌]H, [0̌]H) �
Comp(s, P s || !P s)

α−−→
s′uε

(H
′′
, H′′) � Comp(s, P ′). By Definition 4.4(5) we know that Comp(s, P) = Comp(s, P s || !P s), which

ends this case.
• When s = 1 we follow the same argument as above using (par1) instead of (par0).
• When s = ε we consider the three rules (open), (scope), and (rep), where we do not add anything to the location label.

The structure of P and of α determine which rule is applicable. We omit the histories when obvious from the context
in order to not clutter the text.
– Consider the application of (open) to process P = (νn)P0 and action α = a〈n〉 where a
= n. We thus work with a tran-

sition (νn)P0
α−−−→

εs′uε

P ′
0 for which the rule ensures the existence of the transition P0

a〈n〉−−→
s′uε

P ′
0. As Comp(ε, (νn)P0) =

P0 and Comp(ε, P ′
0) = P ′

0 we get the expected transition Comp(ε, (νn)P0)
a〈n〉−−→
s′uε

Comp(ε, P ′
0).

– Consider the application of (scope) to a process P = (νn)P0, thus working with a transition (νn)P0
α−−−→

εs′uε

(νn)P ′
0. The

rule ensures that n /∈ n(α) and that we have a transition P0
α−−→

s′uε

P ′
0. Applying Definition 4.4 we get the expected

transition Comp(ε, (νn)P0)
α−−→

s′uε

Comp(ε, (νn)P ′
0).

– Consider the application of (rep) to a process P =!P0, thus working with a transition !P0
α−−−→

εs′uε

P ′ . The rule ensures

the existence of the transition P0 || !P0
α−−→

s′uε

P ′ . As Comp(ε, !P0) = Comp(ε, P0 || !P0) = P0 || !P0 and Comp(ε, P ′) = P ′ ,

we get the expected transition Comp(ε, !P0)
α−−→

s′uε

Comp(ε, P ′). �
Corollary 4.7. Applying several times Lemma 4.6, we can extend s to be a string of location components: s ∈ {0, 1}∗ .

From any communication transition we can then recover the transitions in the components identified by the location
labels.

Lemma 4.8 (Decomposing communications). For location strings s, s0, s1, s′
0, s

′
1 ∈ {0, 1}∗ the following holds

if (H,H) � P
τ−−−−−−−−−−−−−−−−−−→

s〈0s0s′0[P0][P ′
0],1s1s′1[P1][P ′

1]〉
(H

′
,H′) � P ′ then

([šl]H, [šl]H) � Comp(sl, P)
α−−−−−−→

s′0[P0][P ′
0]

(H
′′
,H′′) � Comp(sl, P ′) and

([šr]H, [šr]H) � Comp(sr, P)
α−−−−−−→

s′1[P1][P ′
1]

(H
′′′

,H′′′) � Comp(sr, P ′)

where sl = s0s0 , sr = s1s1 , and α notation is defined as a〈n〉 = a(n) and a(n) = a〈n〉.

Proof. We first make use of Lemma 4.6 to simplify to only considering s = ε. Then we work with the labels 0s0 and 1s1
and make two arguments in parallel.

Therefore, we consider P of the form P0 || P1 and apply the (com) rule at the root of the transition derivation tree. This
implies the existence of the two transitions ([0̌]H, [0̌]H) � P0

α−−−−−−−→
s0s′0[P0][P ′

1]
(H

′
0, H′

0) � P ′
0 and ([1̌]H, [1̌]H) � P1

α−−−−−−−→
s1s′1[P1][P ′

1]
(H

′
1, H′

1) � P ′
1, with Comp(0, P) = P0 and Comp(1, P) = P1. Moreover, α and α must be of the forms a〈m〉 and a(m), and

P ′ = (νb̃)(P ′ || P ′), with b̃ = dom(H
′
0)\dom([0̌]H). We know that the channel name a must be the same in both α’s and the
0 1

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 245
output name m is the same as the received name on the input side. Moreover, if b̃
= ε , the only time a name can be added
to an output action label is by the (open) rule, which opens the scope of b and thus we must have m = b.

Apply now Lemma 4.6 (in fact Corollary 4.7 when the labels are strings) to the two transitions to obtain

([š0][0̌]H, [š0][0̌]H) � Comp(s0, P0)
α−−−−−−→

s′0[P0][P ′
1]

(H
′′
,H′′) � Comp(s0, P ′

0)

and

([š1][1̌]H, [š1][1̌]H) � Comp(s1, P1)
α−−−−−−→

s′1[P1][P ′
1]

(H
′′′

,H′′′) � Comp(s1, P ′
1),

which by Corollary 4.5 are the same as ([ˇ0s0]H, [ˇ0s0]H) � Comp(0s0, P) α−−−−−−→
s′0[P0][P ′

1]
(H

′′
, H′′) � Comp(s0, P ′

0) respectively

([ˇ1s1]H, [ˇ1s1]H) � Comp(1s1, P) α−−−−−−→
s′1[P1][P ′

1]
(H

′′′
, H′′′) � Comp(s1, P ′

1).

To see how the right components become the ones from the statement of the lemma apply Definition 4.4(4) to P ′ with
the respective location labels 0s0 and 1s1, having e.g.,

Comp(0s0, P ′) = Comp(0s0, (νñ)(P ′
0 || P ′

1)) = Comp(0s0, P ′
0 || P ′

1) = Comp(s0, P ′
0). �

Conversely, we can lift a transition from a component to the whole process, when it does not enter a communication.

Lemma 4.9 (Composing transitions). For s ∈ {ε, 0, 1} we have that

if ([š]H, [š]H) � Comp(s, P)
α−−→

s′uε

(H
′
,H′) � P ′

1

with uε either [Pu][P ′
u] or 〈0s0s′

0[P0][P ′
0], 1s1s′

1[P1][P ′
1]〉, then

(H,H) � P
α−−−→

ss′uε

(H
′′
,H′′) � P ′ with Comp(s, P ′) = P ′

1

under the following restrictions:

1. for s = 0 if (dom(H
′
)\dom([0̌]H)) ∩ fn(Comp(1, P)) = ∅;

2. for s = 1 if (dom(H
′
)\dom([1̌]H)) ∩ fn(Comp(0, P)) = ∅;

3. for s = ε and P = (νn)P1 if n /∈ n(α) or (α = a〈n〉 and n
= a).

Proof. We take cases after s ∈ {ε, 0, 1}.

1. When s = 0 it implies that P = P0 || Q since Comp(0, P) = P0, otherwise is undefined or it enters under the ε cases
below. The requirements for the rule (par0) are satisfied by the restrictions of the lemma. Therefore, we have the
expected transition (H, H) � P0 || Q α−−−→

0s′uε

(H
′′
, H′′) � P ′

0 || Q and Comp(0, P ′
0 || Q) = P ′

0, where (H
′′
, H′′) are updated

according to the (par0) rule, but this is unimportant for this lemma.
2. When s = 1 use an argument as for s = 0 where we use rule (par1) instead.
3. When s = ε we consider the two non-trivial cases for which Comp is applicable, i.e., when either P =!P1 or P = (νn)P1.

• For P =!P1 we have that Comp(ε, !P1) = Comp(ε, P1 || !P1) = P1 || !P1. Therefore, the transition given by the lemma
is in fact P1 || !P1

α−−−−−−→
s′[P0][P ′

0]
P ′

1 and we are allowed to apply the rule (rep) to obtain !P1
α−−−−−−→

s′[P0][P ′
0]

P ′
1 which is the

transition we are looking for, i.e., having s = ε, P ′ = P ′
1, and Comp(ε, P ′

1) = P ′
1. The histories do not change, so we

omitted them.
• For P = (νn)P1 we have Comp(ε, (νn)P1) = Comp(ε, P1) = P1. We take two cases:

– where n /∈ n(α) for which the only applicable rule is (scope) where we have the transition ([ε̌]H, [ε̌]H) �
(νn)P1

α−−−−−−→
s′[P1][P ′

0]
(H

′
, H′) � (νn)P ′

1. We also have that Comp(ε, (νn)P ′
1) = Comp(ε, P ′

1) = P ′
1 and ([ε̌]H, [ε̌]H) =

(H, H) which end this case.
– when α = a〈n〉 and n
= a, the only rule that can work with this action label is the (open) rule, which will give us

the transition ([ε̌]H, [ε̌]H) � (νn)P1
α−−−−−−→

s′[P0][P ′
0]

(H
′′
, H′′) � P ′

1 and as Comp(ε, P ′
1) = P ′

1 and ([ε̌]H, [ε̌]H) = (H, H) the

statement of the lemma is true. �
Corollary 4.10. Applying several times Lemma 4.9, when the needed restrictions exist, we can extend s to be a string of location
components: s ∈ {0, 1}∗ .

246 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
Lemma 4.11 (Composing communications). Whenever we have

([0̌]H, [0̌]H) � Comp(0, P)
a〈n〉−−−−−−→

s0[P0][P ′
0]

(H
′
0,H′

0) � P ′′
0

and

([1̌]H, [1̌]H) � Comp(1, P)
a(n)−−−−−−→

s1[P1][P ′
1]

(H
′
1,H′

1) � P ′′
1,

for a /∈ dom(H
′
0 \ [0̌]H), then we have the communication

(H,H) � P
τ−−−−−−−−−−−−−−−→

〈0s0[P0][P ′
0],1s1[P1][P ′

1]〉
(H

′
,H′) � P ′

with Comp(0, P ′) = P ′′
0 and Comp(1, P ′) = P ′′

1 . The symmetric case was elided.

Proof. The statement of the lemma implies that Comp is applicable to P , both for a label 0 and 1. This means that P has the
structure of a parallel composition. Because of the restriction a /∈ b̃ we are allowed to use the (com) rule, which gives us that
P ′ = (νb̃)(P ′′

0 || P ′′
1) after the transition. From Definition 4.4(4) we have that Comp(0, (νb̃)(P ′′

0 || P ′′
1)) = Comp(s, (P ′′

0 || P ′′
1)).

which by Definition 4.4(2) becomes Comp(0, P ′′
0 || P ′′

1) = P ′′
0 . Following the same reasoning using first Definition 4.4(4) and

then Definition 4.4(3) we have that Comp(1, P ′′
0 || P ′′

1) = P ′′
1 proving the lemma. The histories are updated by the rule, but

this is not relevant for the lemma, thus we denote them just (H
′
, H′). The symmetric version follows the same lines of

reasoning. �
Lemma 4.12 (Localisation). For any process P and a location string s, whenever Comp is defined, we have:

1. if (H, H) � P
α−−−−−→

s[P1][P ′
1]

(H
′
, H′) � P ′ and (s, s′) ∈ Il then Comp(s′, P) = Comp(s′, P ′),

2. if (H, H) � P
τ−−−−−−−−−−−−−−→

s〈s0[P0][P ′
0],s1[P1][P ′

1]〉
(H

′
, H′) � P ′ and (ss0, s′) ∈ Il and (ss1, s′) ∈ Il then Comp(s′, P) = Comp(s′, P ′).

Proof. We first prove the part 1.
Since (s, s′) ∈ Il then we can split s and s′ into s = u0l1, s′ = u1l′1 respectively where u = lcp(s, s′) is the largest common

prefix, or the symmetric s = u1l1, s′ = u0l1, which can be treated analogous. From Corollary 4.5 we have that Comp(s, P) =
Comp(u0l1, P) = Comp(0l1, Comp(u, P)), and denote Comp(u, P) = Pu . The decomposition Lemma 4.6 (i.e., Corollary 4.7 for
u a string) allows us to derive the transition:

([ǔ]H, [ǔ]H) � Pu = Comp(u, P)
α′−−−−−−−→

0l1[Pε][P ′
ε]

(H
′′
,H′′) � Comp(u, P ′) = P ′

u

with α′ = α except for the case when (open) rule is applied in the derivation tree, with α = a〈n〉, a
= n and α′ = a〈n〉.
Because of the location label 0l1 it means that Pu = P0 || P1, and applying Lemma 4.6 to the above transition we derive:

([0̌][ǔ]H, [0̌][ǔ]H) � Comp(0, Pu) = P0
α′−−−−−−→

l1[Pε][P ′
ε]

(H
′′′

,H′′′) � P ′
0 = Comp(0, P ′

u).

Lemma 4.6 also ensures that (dom(H
′′′

)\dom([ǔ0]H)) ∩ fn(Comp(1, Pu)) = ∅.
Moreover, since (0, 1) ∈ Il we can apply the current lemma inductively to the transition with location 0l1 to obtain that

Comp(1, Pu) = Comp(1, P ′
u). These (and the (par0) rule that is applied to obtain the last transition) imply that P ′

u = P ′
0 || P1.

To finish the proof, use Corollary 4.5 to get Comp(s′, P) = Comp(1l′1, Comp(u, P)), and we thus need to prove that

Comp(1l′1,Comp(u, P)) = Comp(l′,Comp(u, P ′)).

We already know that Comp(u, P) = Pu and Comp(u, P ′) = P ′
u . Therefore, we need to show

Comp(1l′1, Pu) = Comp(1l′1, P ′
u).

Since we already have proven that Comp(1, Pu) = Comp(1, P ′
u) this part is done.

For the part 2 we can consider ss0 and s′ to be written as ss0 = u0l0 respectively s′ = u0l′0, for which the independence
says that u0 is maximal and l0 start with a 0 and l′0 with a 1 (the symmetric case is analogous). Similarly, for ss1 and s′
their independence implies that ss1 = u1l1 and s′ = u1l′1. Since u1l′1 = s′ = u0l′0 we can identify two cases:

i when u1 = u0 or

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 247
ii when u0 ≺ u1 ∨ u1 ≺ u0.

Recall that since they are part of a communication location label the s0 starts with a 0 and s1 starts with a 1. The
case (i) means that u0 ≺ s ∧ u1 ≺ s. Because of this, the component identified by s′ is outside any of the two components
that participate in the communication, and thus the rest of this case follows as for part 1.

For the case (ii) we know that ss0 can be written as s0s′
0 and ss1 can be written s1s′

1, which implies that u0 ≺ u1 ∨ u1 ≺
u0. We work with the first substring inclusion, as the second one would be analogous. In this case we deduce that u0 = s,
for otherwise we would break the requirement that u0 is maximal. This implies that s′ can now be written as s′ = s1l′′0
(when u1 is the shortest then s′ = s0l′′1), which means that the component we are working with is in the right part of the
communication. Moreover, u1 can be written as s1v ′ and thus the whole s′ = s1v ′l′1 and ss1 = s1v ′l1. Since s′ Ilss1 and s1v ′
is maximal then l′1 Ill1 (and they start one with 0 and the other with 1).

Using the decomposition Lemma 4.8 we obtain the transition

([ˇs1v ′]H, [ˇs1v ′]H) � Comp(s1v ′, P)
α−−−−−→

l1[R][R ′]
(H

′′′
,H′′′) � Comp(s1v ′)P ′.

We can apply the current lemma inductively to this transition and the independent labels l′1 Ill1 to obtain

Comp(l′1,Comp(s1v ′, P)) = Comp(l′1,Comp(s1v ′)P ′)
which by Corollary 4.5 transforms in the expected result. �
Proof of Theorem 4.2. It is easy to see that the independence relation I of Definition 2.20 is irreflexive, because it inherits
this from Is , and symmetric, because Is is and the second part is symmetric by definition.

For the first ATS requirement 4.1(1) each event in the generated transition system is a split event, which by Definition 2.18
is attached to a transition between two process.

The ATS requirement 4.1(2) is covered by Lemma 4.3.
To prove the ATS requirement 4.1(3) consider a history (H, H) and some process P , and two events e = (α, u, D), e′ =

(α′, u′, D ′) enabled in this state (H, H) � P , which are also independent eIe′ . Take the two transitions corresponding to
these events in the generated transition system, i.e.:

(H,H) � P
α−−→

u,D
(H

′
,H′) � P ′ and (H,H) � P

α′−−−→
u′,D ′ (H

′′
,H′′) � P ′′.

To satisfy 4.1(3) we need to prove the existence of the following transitions:

(H
′
,H′) � P ′ α′−−−→

u′,D ′ (H
′′′

,H′′′) � P ′′′ and (H
′′
,H′′) � P ′′ α−−→

u,D
(H

′′′′
,H′′′′) � P ′′′′

with H′′′ = H
′′′′

, H′′′ = H′′′′, P ′′′ = P ′′′′ .
We can have three possible combinations of events, depending on the structure of their location labels:

1. u = s[R0][R ′
0] and u′ = s′[R1][R ′

1];
2. u = s〈s0[R0][R ′

0], s1[R1][R ′
1]〉 and u′ = s′[R2][R ′

2];
3. u = s〈s0[R0][R ′

0], s1[R1][R ′
1]〉 and u = s′〈s2[R2][R ′

2], s3[R3][R ′
3]〉.

We treat the first case.
Since eIe′ then Definition 2.20 implies that eIs e′ and that �n : D(n) = u′ ∧ �n : D ′(n) = u (which we use towards the

end of the proof, when showing the ATS Property 4.1(4)). Since Loc(e) = {s} and Loc(e′) = {s′} we have by Definition 2.12
that sIls′ which means that they look like s = v0s3 and s′ = v1s′

3 with v = lcp(s, s′) being the largest common prefix. In
consequence, Comp(v, P) = P0 || P1 is a parallel composition, and the decomposition Lemma 4.6 applied using v allows to
derive the transitions

([v̌]H, [v̌]H) � Comp(v, P)
α−−−−−−−→

0s3[R0][R ′
0]

(H
′
v ,H′

v) � Comp(v, P ′) and

([v̌]H, [v̌]H) � Comp(v, P)
α′−−−−−−−→

1s′3[R1][R ′
1]

(H
′′
v ,H′′

v) � Comp(v, P ′′).

For this part of the proof we can ignore the D, D ′ sets because these are derived from the histories of transitions like the
above. Therefore, we reason over simpler transitions as above, and in the end we argue that the same split transitions on
the respective D and D ′ can be obtained from the resulting histories.

At this point the two derivation trees are different in the sense that in one the (par0) rule is applicable whereas in the
other the (par1) rule. From the two (par) rules we have the following respective transitions

248 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
([v̌0]H, [v̌0]H) � P0
α−−−−−−→

s3[R0][R ′
0]

(H
′
0,H′

0) � P ′
0 and ([v̌1]H, [v̌1]H) � P1

α′−−−−−−→
s′3[R1][R ′

1]
(H

′
1,H′

1) � P ′
1.

According to the decomposition Lemma 4.6 we also have Comp(v0, P) = P0 and Comp(v1, P) = P1, as well as Comp(v0, P ′) =
P ′

0 and Comp(v1, P ′′) = P ′
1. Moreover, Lemma 4.6 also provides the following dom(H

′
0) \ dom([v̌0]H) ∩ fn(P1) = ∅ respec-

tively dom(H
′
1) \ dom([v̌1]H) ∩ fn(P0) = ∅.

Now we show how to derive the first expected transition (H
′
, H′) � P ′ α′−−−→

u′,D ′ (H
′′′

, H′′′) � P ′′′ . Because of the localisation

Lemma 4.12 applied to labels 0s3 Il1 we know that P1 = Comp(1, Comp(v, P)) = Comp(1, Comp(v, P ′)) and thus we can
deduce that Comp(v, P ′) = P ′

0 || P1. To this we can now apply the rule (par1) with the right transition from above, and
deduce the transition

(H
′
v ,H′

v) � P ′
0 || P1 = Comp(v, P ′) α′−−−−−−−→

1s′3[R1][R ′
1]

(H
′′′
v ,H′′′

v) � P ′
0 || P ′

1.

We were able to apply the right transition from above with a different (correct) history because of Lemma 3.2. Moreover,
the requirement of the (par1) rule (i.e., b̃ ∩ fn(P ′

0) = ∅, with b̃ the change in histories from the respective transition above)
was provided above by Lemma 4.6 but through the result in Lemma 3.3, which says that the change in the domain of the
output histories b̃ = dom(H

′′′
v) \dom(H

′
v) is the same for any starting histories (using moreover the fact that fn(P0) = fn(P ′

0)).
In order to obtain the full required transition we need to show that now we can apply Lemma 4.9 for composing

transitions on the above last transition (i.e., the respective restrictions of Lemma 4.9 need to be satisfied). For this we
consider a minimal v ∈ {0, 1} and take cases depending on it.

Consider v = 0 (or for v = 1 an analogous argument will go through), i.e., we use s = 00s3 and s′ = 01s′
3. Apply the

localisation Lemma 4.12 with the independent locations s = 00s3 Il1 to deduce that Comp(1, P) = Comp(1, P ′), and therefore,
P ′ = P ′

0 || P1 || Q 1. The restriction for applying Lemma 4.9, i.e.: (dom(H
′
0) \dom([0̌]H)) ∩ fn(Comp(1, P ′) = Q 1) = ∅, is given by

the decomposition Lemma 4.6 when it was applied to the second transition with the above particular v = 0. This is because
the lemma had to apply the (par0) rule which keeps the restriction on names (dom(H

′
0) \dom([0̌]H)) ∩ fn(Comp(1, P)) which

is equal, as mentioned above, to Q 1.
To any of the above we can apply rules that do not change the location label, i.e. the (open), (scope), or (rep). The first

two need the form of P to be P = (νn)Q , for which Comp(v, P) = Q for any location label v . The change of histories
will tell which of (open) or (scope) have been applied. For both these rules the decomposition Lemma 4.6(3) provides the
restrictions needed by the composition Lemma 4.9(3).

In consequence, in all cases we can apply the composition Lemma 4.9 to Comp(v, P ′) α′−−−−−−−→
1s′3[R1][R ′

1]
P ′

0 || P ′
1 to obtain

P ′ α′−−−−−−−−→
v1s′3[R1][R ′

1]
P ′′′ with Comp(v, P ′′′) = P ′

0 || P ′
1.

We can use analogous reasoning to obtain a transition Comp(v, P ′′) α−−−−−−−→
0s3[R0][R ′

0]
P ′

0 || P ′
1. We can apply the composition

Lemma 4.9 to obtain P ′′ α−−−−−−−−→
v0s3[R0][R ′

0]
P ′′′′ with Comp(v, P ′′′′) = P ′

0 || P ′
1.

It remains to argue that P ′′′ = P ′′′′ . This is the case because of the localisation Lemma 4.12 which says that for any
independent location label v ′ Il v we have:

• Comp(v ′, P) = Comp(v ′, P ′) as well as Comp(v ′, P) = Comp(v ′, P ′′) from the given transitions;
• Comp(v ′, P ′) = Comp(v ′, P ′′′) as well as Comp(v ′, P ′′) = Comp(v ′, P ′′′′) for the above deduced transitions.

Therefore, we get Comp(v ′, P ′′′) = Comp(v ′, P ′′′′), which together with the fact that Comp(v, P ′′′) = P ′
0 || P ′

1 = Comp(v, P ′′′′)
we have our expected result P ′′′ = P ′′′′ .

Claim: The histories H ′ and H ′′ are changed by the two derived transitions into the same history H ′′′ = H ′′′′ .
We look in the derivation tree of the transition to identify how histories are being changed. Observe that rules (sum),

(rep), (scope), copy the histories from the hypothesis to the conclusion, i.e., they only propagate down the tree the changes
done further up by the other rules. Rule (out) makes no change to the histories.

We discuss how the rest of the rules (in), (pari), (open), (comi), change the histories.
The only rule that adds new names to the input history H is (in) and this can only be applied once in a derivation tree.

Therefore, the action label α of the transition will tell whether the (in) rule has been applied, and thus we know exactly
what has been added to the input history, i.e., the pair (n, ε) with n the name from the action α = a(n). Moreover, when
(in) is applied then in the same derivation tree the rule (out) cannot appear, and thus also not the rule (open) as it needs
further up in the tree an application of (out) (as seen from the action label in the hypothesis of (open)). In consequence,
in a derivation tree, together with rule (in) only (par) or (com) rules may still be applicable. The (par) rules update any
history information coming from further up in the derivation tree by adding the respective component label, i.e., replacing

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 249
[i]H by iH
′
i for extruder histories and [i]H by iH′

i for input histories. The (com) rules update the input histories with the
label of the component that does the input in the communication.

The (com) rules, on the other hand, do not change the extruder histories (the same as e.g., (out) does not), since in
the conclusion we have the same output histories both on the left and on the right of the transition. But further up in the
derivation tree histories may change, in response to (open) or (pari).

The (par) rules add new information to the extruder history as H
′′

. The pair that is added in the H
′′

depends on the
action label α = a〈n〉 and on the history that we work with (both input and extruder parts of the history). In any case, at
most one name is added to the history. Moreover, when (in) is applicable, then H′′

is empty because it depends on α being
an output action.

All these tell that when the actions on the transitions that we work with, i.e., either α or α′ are input actions, then the
history is changed by adding one name pair to the input history H and leaving the output history unchanged.

The (open) rule requires a previous application of (out), and therefore, no application of (in) is possible, thus the input
history H remains unchanged throughout the derivation tree. The (open) rule adds one single pair (n, u) which we extract
from the transition labels, i.e., having α = a〈n〉 and the location label u. Note that at this point in the derivation tree the
name n is added as extruder with the current location u, but this location is updated by the (par) rules through prefixing
with location labels depending on the respective component. Thus, at the root of the tree this extruded name appears as
new in the history but with the full label u which we see on the transition that we work with.

To finish the proof of this claim we take cases after α and α′ .

1. When both α = a(n) and α′ = b(m) are input actions.
The given histories are H′ = H ∪ H1 where H1 = (∅, {(n, u)}), and H′′ = H ∪ H2 where H2 = (∅, {(m, u′)}). Important is
that adding new entries to the input histories does not depend on the previous history H. Therefore, when we apply
the input actions in the derived transitions, i.e., α′ to H′ and α to H′′ , we add the respective input names. This means
that H′′′ = H′ ∪ H2 = H ∪ H1 ∪ H2 and H′′′′ = H′′ ∪ H1 = H ∪ H2 ∪ H1, which are the same. This reasoning works even when
some of the names a, x, n, b, y, m are equal.

2. When both α = a〈n〉 and α′ = b〈m〉 are output actions, where both n, m can be extruded names or not, and not neces-
sarily different.
(a) Consider both actions extrude their name and n
= m (i.e., the initial process P contains both (νn)(νm)); then the

given histories are H′ = H ∪ H1 where H1 = ({(n, u)}, ∅), and H′′ = H ∪ H2 where H2 = ({(m, u′)}, ∅). Since both
actions are initial extruders for their names, it means that the (open) rule has been applied in both derivation trees.
Whenever (open) is applied then we are guaranteed that the name added to the extruder history does not already
exist in the extruder history part, i.e., (open) cannot be applied twice with the same name during the execution of
a process.
Therefore, if H1 adds name n to H and H2 adds name m, and neither of the names existed in H, then it is obvious
that when in the deduced transitions the α′ is applied to H′ it will add H2. The same for the other transition to
obtain the expected result as in the previous case.

(b) When both actions extrude the same name n = m (and thus P contains only (νn)), we are in the situation of
parallel extruders. Here is the case when in the initial transitions we apply the rule (open) whereas in the derived
transitions the rule (par) (for possible extruder). This is fine since the name n will be initially added to the histories
H ′ and H ′′ by the (open) rule, and then in the deduced transitions it will satisfy the requirements to be added to
the histories again, but with an independent location.

(c) The case when P does not have a (ν) but the history contains a name n ∈ H is handled by the (par) rules since
this means that the respective output is a possible extruder (not an initial extruder). For the (par) rule to add to
the extruder history, i.e., so H′′
= ∅, the name that needs to be added must already exist in the history but with an
independent location label. Assume this for α, thus (n, u′′) ∈ H with u′′ Ilu. No matter what the α′ does it only adds
to the histories and thus we will still have (n, u′′) ∈ H

′′
. Therefore α will still add the (n, u), and thus we get the

same histories in both deduced transitions.
(d) Any other possibilities are as simple as the last case above, or are trivial since they do not change any history (like

when the outputs do not extrude).
3. When α is an input action and α′ is an output action the reasoning is simple similar to the one done in the last cases.

Claim: The deduced transitions can be split with the respective D, D ′ based on the respective histories.

From the two given transitions we know that both D ⊆ H and D ′ ⊆ H. Since the histories only (at most) increase through
transitions and we have seen that H ⊆ H ′′ then we also have that D ⊆ H ′′ , meaning that the transition can be split with D
(the same for D ′ ⊆ H ′).

For the second case, when locations u = s〈s0[R0][R ′
0], s1[R1][R ′

1]〉 and u′ = s′[R2][R ′
2], the proof follows similar argu-

ments as for the first case, with few differences which we comment about in the following. Note that the independence of
the events now offers two pairs of independent locations: ss0 Ils′ and ss1 Ils′ , which give rise to several cases. Recall that s0
and s1 start with a 0 respectively 1.

250 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
Assume that in both independences we have v = lcp(ss0, s′) ≺ s and v ′ = lcp(ss1, s′) ≺ s, which means that v = v ′ . It is
easy to see that now we can immediately apply the same reasoning as we did before, for the first case. Moreover, recall
that the (com) rule which is applied for the transition with u does not change histories, and thus the transition at u does
not change histories. This makes the above reasoning about histories even simpler and we can easily deduce the existence
of the splitting sets D, D ′ .

Assume that v = s which means that ss0 = v0s′
0 and s′ = v1s′

3. This in turn implies that s′
3
= ε because otherwise we

would get s′ ≺ ss1 = v1s′
1 which breaks the independence of these two. Moreover, since v1s′

1 = ss1 Ils′ = v1s′
3 we get that

s′
1 Ils′

3 and denote lcp(s′
1, s

′
3) = v ′′ , thus having ss1 = v1v ′′0s′′

1 and s′ = v1v ′′1s′′
3 (or a symmetric variant).

Since u is a communication location label the (com) rule must have been applied in the derivation tree, which requires
Comp(v, P) = P0 || P1, thus, having the following transitions

(H,H) � P
τ−−−−−−−−−−−−−−−−−−−−→

v〈0s′0[R0][R ′
0],1v ′′0s′′1[R1][R ′

1]〉,D
(H

′
,H′) � P ′ and (H,H) � P

α′−−−−−−−−−−−−→
v1v ′′1s′′3[R2][R ′

2],D ′
(H

′′
,H′′) � P ′′.

We must deduce the existence of the following two transitions

(H
′
,H′) � P ′ α′−−−→

u′,D ′ (H
′′′

,H′′′) � P ′′′ and (H
′′
,H′′) � P ′′ τ−−→

u,D
(H

′′′′
,H′′′′) � P ′′′′,

with H′′′ = H
′′′′

, H′′′ = H′′′′ and P ′′′ = P ′′′′ . We concentrate on deducing the left transition.
Using Lemma 4.6 on the first given transition we can find the following transition (ignoring the splitting sets D, D ′ for

now, as we did before)

([v̌]H, [v̌]H) � Comp(v, P)
τ−−−−−−−−−−−−−−−−−→

〈0s′0[R0][R ′
0],1v ′′0s′′1[R1][R ′

1]〉
(H

′
v ,H′

v) � Comp(v, P ′).

At this point the (com) rule is applicable and we know that Comp(v, P) = P0 || P1 to some Comp(v, P ′) = P ′
0 || P ′

1. Using the
decomposition of communications Lemma 4.8 we get two transitions

([v̌0]H, [v̌0]H) � Comp(0,Comp(v, P))
α−−−−−−→

s′0[R0][R ′
0]

(H
′
v0,H′

v0) � Comp(0,Comp(v, P ′)) and

([v̌1]H, [v̌1]H) � Comp(1,Comp(v, P))
α−−−−−−−−→

v ′′0s′′1[R1][R ′
1]

(H
′
v1,H′

v1) � Comp(1,Comp(v, P ′)),

with (H
′
v0, H′

v0) and (H
′
v1, H′

v1) some arbitrary histories (the indexes are only meant to help keep track where they come
from). Applying more the decomposition Lemma 4.6 and Corollary 4.5 to the last transition we obtain

([ˇv1v ′′]H, [ˇv1v ′′]H) � Comp(v1v ′′, P)
α−−−−−−−→

0s′′1[R1][R ′
1]

(H
′
v1v ′′ ,H′

v1v ′′) � Comp(v1v ′′, P ′).

Whereas applying the same decomposition Lemma 4.6 to the second given transition from the beginning we obtain

([ˇv1v ′′]H, [ˇv1v ′′]H) � Comp(v1v ′′, P)
α′−−−−−−−→

1s′′3[R2][R ′
2]

(H
′′
v1v ′′ ,H′′

v1v ′′) � Comp(v1v ′′, P ′′).

Because of the localisation Lemma 4.12 and the independence of these last two location labels we can apply the same
transition with α′ but to the component of P ′ , i.e., deduce

Comp(v1v ′′, P ′) α′−−−−−−−→
1s′′3[R2][R ′

2]
Comp(v1v ′′, P ′′).

Note that the histories do not matter at this point, because of the same arguments that we gave before; therefore we do
not mention histories in these last transitions. We can lift this transition using localisation Lemma 4.12 and the composition
of transitions Lemma 4.9 because the restrictions are satisfied by the previous decomposition lemma applications (similarly
as we argued in the first case above) and obtain the transition

Comp(v, P ′) α′−−−−−−−−−→
1v ′′1s′′3[R2][R ′

2]
Comp(v, P ′′).

Because of the independence with the label 0s′
0 we can apply the localisation lemma to deduce that this part of the process

also remains unchanged. Therefore, when applying again the composition Lemma 4.9 we lift the transition to the top-most
process, as expected

P ′ α′−−−−−−−−−−→
v1v ′′1s′′[R][R ′]

P ′′′

3 2 2

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 251
with P ′′′ the same as P ′ only with the component Comp(v1v ′′, P ′) changed accordingly. This component is different than
the part that was changed through the communication.

To deduce the second transition apply a similar argument, but when lifting up apply the composition of communications
Lemma 4.11 to deduce the correct τ -transition. The resulting process will be the same as P ′′′ because when first we applied
the transition with α′ we change a part which was then not touched by the communication transition.

It is easy to see that these deduced transitions are allowed, and that the histories are the same, i.e., H ′′′ = H ′′′′ = H ′′ .
For the fourth ATS requirement of Definition 4.1(4) consider a history H, some process P , an event e = (α, u, L) with

a transition H, P [α],L−−−→
u

H′, P ′ , and an event e′ = (α′, u′, L′) with a transition H′, P ′ [α′],L−−−→
u′ H′′, P ′′ , where we also have that

eIe′ . To satisfy 4.1(4) we need to prove the existence of the following transitions

H, P
[α′],L′−−−−→

u′ H′′′, P ′′′ and H′′′, P ′′′ [α],L−−−→
u

H′′, P ′′.

We will only prove the first of the transitions and rely on the proof for the requirement Definition 4.1(3) to show the
existence of the second transition. This is the case because once we have deduced the transition from P , deducing the
fourth transition will fall in under Definition 4.1(3).

We have four different combinations of events depending on the structure of their location labels:

1. u = s[R0][R ′
0] and u′ = s′[R1][R ′

1];
2. u = s〈s0[R0][R ′

0], s1[R1][R ′
1]〉 and u′ = s′[R2][R ′

2];
3. u = s[R0][R ′

0] and u′ = s′〈s1[R1][R ′
1], s2[R2][R ′

2]〉;
4. u = s〈s0[R0][R ′

0], s1[R1][R ′
1]〉 and u = s′〈s2[R2][R ′

2], s3[R3][R ′
3]〉.

For case 1 we first write s and s′ as we did in the proof of case 1 for 4.1(3) as s = lcp(s, s′)0v and s′ = lcp(s, s′)1v ′ (the
symmetric versions follow just the same). Using the decomposition Lemma 4.6 on the two given transitions we have the
two transitions

Comp(lcp(s, s′), P)
α−→
0v

Comp(lcp(s, s′), P ′)

and, coming after it,

Comp(lcp(s, s′), P ′) α′−−→
1v ′ Comp(lcp(s, s′), P ′′).

We want to prove the existence of the transition Comp(lcp(s, s′), P) α′−−→
1v ′ P ′′′

0 . Having this we can employ the composition

Lemma 4.9, because its restrictions are offered by the previous decomposition lemma, similar to what we argued before,
and we deduce the required transition P

α′−−−−−−→
lcp(s,s′)1v ′ P ′′′ with Comp(lcp(s, s′), P ′′′) = P ′′′

0 .

Since 0v Il1v ′ we can apply the localisation Lemma 4.12 to the first transition to deduce that

Comp(1v ′,Comp(lcp(s, s′), P)) = Comp(1v ′,Comp(lcp(s, s′), P ′)).
In consequence we can apply the second transition to this component to obtain the transition that we are looking for, with
P ′′′

0 = Comp(lcp(s, s′), P ′′). Here we have to apply the decomposition and composition lemmas to go down respectively up
the location string, similar to what we argued in the previous relevant case for ATS restriction 4.1(3).

It remains to make sure that the above derived transition is allowed, which by Definition 3.1 means to show that L′ ⊆ H.
We know that L′ ⊆ H

′
and we know that H′ = H ∪ H0 where H0 may be of the form ({n, u|{0,1,[P]}}, ∅). In fact, any name

that is added to H0 by α will have the location u|{0,1,[P]} . To show our inclusion we can show that L′ ∩ H0 = ∅. This is given
by the independence relation eIπ e′ which implies that �n : L′(n) = u|{0,1,[P]} .

The remaining three cases follow similar arguments as the above case 1 and the respective cases 2 and 3 from the proof
for the ATS requirement 4.1(3). �
5. Conclusion and related work

We provided the first stable, non-interleaving, early operational semantics for the pi-calculus conservatively generalising
the interleaving early operational semantics. The semantics is given as labelled asynchronous transition systems (LATS). We
followed and conservatively generalised the approach for CCS in [33] by capturing the link causalities introduced by the
pi-calculus processes through a notion of extrusion histories inspired from the recent work of [17]. In this respect, our
semantics treats all the examples that are discussed in [17, Sec. 6].

Part of our motivation was to give a non-interleaving semantics that is close to the standard early semantics of pi-
calculus; hence our use of operational rules and a transition-like model. Moreover, we aimed to stay close to standard

252 T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253
non-interleaving models; hence the stable model of asynchronous transition systems, which required us to split events in
order to handle disjunctive causalities.

There have been several works on causal models for pi-calculi using various techniques. The work of [12,13] uses indexed
labelled asynchronous transition systems (N-LATS), which extend the general works based on category theory for CCS [3,47],
looking at early bisimulation semantics [5,6]. This work takes what they refer to as a model-theoretic approach, identifying
N-LATS as a transition system model suitable for representing causality and linking of pi-calculi independently of the syntax.
This work uses similar concepts as the work of [17] that we were inspired by; i.e., the N-LATS keep a set of names, and
use special labels and dependencies between these labels in order to keep track of the special link dependencies that
pi-calculus introduces. However, [13] views the model categorically, whereas [17] not; and [13] works with an extension
of LATS whereas [17] with a similar extension of event structures. A deeper investigation of the relationship between our
semantics and the one in [12,13] could perhaps lead to also a deeper understanding between our semantics and the one of
[17].

The work of [24] takes a domain theoretic semantic of the pi-calculus given in terms of pomsets and appropriate opera-
tions on these. The papers [9,21] present Petri nets semantics for the pi-calculus, and thus, the same as the previous work,
are not structural operational in nature.

The work of [6] makes the distinction between “subject and object dependencies”, which we also adopted, and they
define the notion of causal bisimulation to distinguish processes wrt. their subject or object dependencies. However, this
causal equivalence is shown to be encoded into the ordinary interleaving observational equivalence, thus not giving the
true concurrency semantics that we are looking for in this paper. A similar study is carried by [38] in the setting of
location bisimulation [8] with a similar (fully abstract) encoding into observational bisimulation as above. Good comparative
overviews of location equivalence versus other causality equivalences are provided by [26,15]. This last line of work is what
we adopt in our paper as well, i.e., using locations (static locations, as opposed to dynamic locations as above) to capture
where in a process the concurrent actions are performed, i.e., by which parallel component. We started from the work of
[33] for CCS; however there exist several related works including [1,10] for static locations and [8] for dynamically assigned
locations. The handbook chapter [11] gives a good introduction and more recent overview of this subject. A thorough
investigation of non-interleaving semantics for CCS is carried in [7], which compared to [33] and our work, uses the general
choice operator instead of guarded summation. In our case we would need to enrich the labels to keep track of the branches
being taken, similar to what [7] are doing. However, [7] records the whole computation along with the structure of the
choices (which should not be confused with what we record in our extruder histories); which might be too much for our
case, and an approach as in [11] with sequences of L/R branching markers could be enough. The models used in [7] (i.e.,
using equivalences of sequences of transitions) capture what LATS capture using the diamond properties. The paper [20]
also investigates the distinction between the CCS causality and the specific pi-calculus causalities as [6] did, but which they
call “structural and link dependencies”. The paper studies to some extent the notion of extruders generating different kinds
of causalities in the late style of pi-calculus. They also make use of the same static location labels as in the case of CCS
above, which they call “proof terms”.

None of these approaches deal with the notion of parallel extruders, which implies disjunctive causalities and thus
requires event splitting in order to regain stability of the concurrency models. The work of [32] introduces a graph rewriting
semantics of the early style of pi-calculus (without summation) that deals with parallel extruders. More thoroughly, the
works of [16,45,17] treat parallel extruders and full pi-calculus in a denotational semantics, using an extended form of
event structure with a set holding the bound names of the process.

The work of [19] on reversible pi-calculus (Rpi) also provides a stable causal semantics as a by-product, given in [19,
Chap. V] when one views Rpi as an annotated version of pi-calculus. Concretely, the memories in Rpi carry more information
(needed for the purpose of reversibility) than needed for capturing causalities (i.e., information of extrusion that we record
in histories). Still, it is not trivial to provide a formal relationship between their memories and our histories, mainly because
we use explicit location labels, whereas they use a split symbol on the memory stacks. It could also be worth noting that (to
simplify presentation) the syntax used in [19] does not consider choices nor replication (i.e., only covers finite, deterministic
processes). However, [19] does not explicitly identify the events and thus neither a non-interleaving (event-based) model
underlying their semantics (as we do here using asynchronous transition systems). The reversible semantics is given in
terms of reduction contexts, with no given formal relations with other models. Note also that a main goal of [19] is to have
a compositional semantics, whereas we paid attention to obtaining a stable operational model.

As future work we aim to prove that the late semantics given in Remark 3.10 yields a labelled asynchronous transition
system, and then explore the differences between early and late style non-interleaving semantics in the setting of this paper.
We conjecture that it is possible to define a splitting for the extended event structures of [17] to obtain the prime event
structures given by unfolding the asynchronous transition systems provided by our late semantics. This we believe would
also be relevant for comparing the semantics of Rpi [19] with our semantics and the compositional denotational semantics
of [17]. An alternative could be to work with more expressive models of concurrency than prime event structures and ATS,
which can also capture disjunctive causalities, like higher dimensional automata [36,44] or configuration structures [43] and
ST-structures [25] if aiming for an event-based model.

The free choice (compared to our use of guarded choice in this paper) introduces more details in a non-interleaving
semantics; see [11] or our report [35] where we have worked out the generalisation of the present semantics to unguarded

T.T. Hildebrandt et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 227–253 253
choice. Finally, we are working on lifting the present results to psi-calculi [4], laying the foundations for generalising the
meta-theory and operational semantics of psi-calculi to non-interleaving semantics.

Acknowledgements

We are grateful for suggestions and comments from anonymous reviewers of earlier versions of this work.

References

[1] L. Aceto, A static view of localities, Form. Asp. Comput. 6 (2) (1994) 201–222.
[2] J. Aranda, C.D. Giusto, C. Palamidessi, F.D. Valencia, On recursion, replication and scope mechanisms in process calculi, in: F.S. de Boer, M.M. Bonsangue,

S. Graf, W.P. de Roever (Eds.), Formal Methods for Components and Objects, FMCO’06, in: LNCS, vol. 4709, Springer, 2007, pp. 185–206.
[3] M.A. Bednarczyk, Categories of Asynchronous Systems, PhD thesis, Univ. Sussex, 1988.
[4] J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: a framework for mobile processes with nominal data and logic, Log. Methods Comput. Sci.

7 (1) (2011).
[5] M. Boreale, D. Sangiorgi, A fully abstract semantics for causality in the pi-calculus, in: STACS, 1995, pp. 243–254.
[6] M. Boreale, D. Sangiorgi, A fully abstract semantics for causality in the pi-calculus, Acta Inform. 35 (5) (1998) 353–400.
[7] G. Boudol, I. Castellani, Flow models of distributed computations: three equivalent semantics for CCS, Inf. Comput. 114 (2) (1994) 247–314.
[8] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn, A theory of processes with localities, Form. Asp. Comput. 6 (2) (1994) 165–200.
[9] N. Busi, R. Gorrieri, A Petri net semantics for pi-calculus, in: CONCUR, in: LNCS, vol. 962, Springer, 1995, pp. 145–159.

[10] I. Castellani, Observing distribution in processes: static and dynamic localities, Int. J. Found. Comput. Sci. 6 (4) (1995) 353–393.
[11] I. Castellani, Process algebras with localities, in: Handbook of Process Algebra, Elsevier, 2001, pp. 945–1045 (chapter 15).
[12] G.L. Cattani, P. Sewell, Models for name-passing processes: interleaving and causal, in: LICS, IEEE Computer Society, 2000, pp. 322–333.
[13] G.L. Cattani, P. Sewell, Models for name-passing processes: interleaving and causal, Inf. Comput. 190 (2) (2004) 136–178.
[14] E. Clarke, O. Grumberg, M. Minea, D. Peled, State space reduction using partial order techniques, Int. J. Softw. Tools Technol. Transf. 2 (3) (1999)

279–287.
[15] F. Corradini, R. De Nicola, Locality based semantics for process algebras, Acta Inform. 34 (4) (1997) 291–324.
[16] S. Crafa, D. Varacca, N. Yoshida, Compositional event structure semantics for the internal pi-calculus, in: CONCUR, in: LNCS, vol. 4703, Springer, 2007,

pp. 317–332.
[17] S. Crafa, D. Varacca, N. Yoshida, Event structure semantics of parallel extrusion in the pi-calculus, in: FOSSACS, in: LNCS, vol. 7213, Springer, 2012,

pp. 225–239.
[18] I. Cristescu, Operational and Denotational Semantics for the Reversible π -Calculus, PhD thesis, Université Paris Diderot – Paris 7 – Sorbonne Paris Cité,

2015.
[19] I. Cristescu, J. Krivine, D. Varacca, A compositional semantics for the reversible pi-calculus, in: ACM/IEEE Symposium on Logic in Computer Science,

LICS, IEEE Computer Society, 2013, pp. 388–397.
[20] P. Degano, C. Priami, Non-interleaving semantics for mobile processes, Theor. Comput. Sci. 216 (1–2) (1999) 237–270.
[21] J. Engelfriet, A multiset semantics for the pi-calculus with replication, Theor. Comput. Sci. 153 (1&2) (1996) 65–94.
[22] T.T. Hildebrandt, Categorical Models for Concurrency: Independence, Fairness and Dataflow, PhD thesis, University of Aarhus, Denmark, 1999.
[23] T.T. Hildebrandt, C. Johansen, H. Normann, A stable non-interleaving early operational semantics for the pi-calculus, in: 11th International Conference

on Language and Automata Theory and Applications, in: LNCS, vol. 10168, 2017, pp. 51–63.
[24] L.J. Jagadeesan, R. Jagadeesan, Causality and true concurrency: a data-flow analysis of the pi-calculus, in: AMAST, in: LNCS, vol. 936, Springer, 1995,

pp. 277–291.
[25] C. Johansen ST-structures, J. Log. Algebraic Methods Program. 85 (6) (2016) 1201–1233.
[26] A. Kiehn, Comparing locality and causality based equivalences, Acta Inform. 31 (8) (1994) 697–718.
[27] I. Lanese, C.A. Mezzina, J.-B. Stefani, Reversibility in the higher-order pi-calculus, Theor. Comput. Sci. 625 (2016) 25–84.
[28] R. Milner, A Calculus of Communicating Systems, vol. 92, Springer-Verlag, 1980.
[29] R. Milner, Communicating and Mobile Systems: The π -Calculus, Cambridge Univ. Press, 1999.
[30] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I–II, Inf. Comput. 100 (1) (1992) 1–77.
[31] R. Milner, J. Parrow, D. Walker, Modal logics for mobile processes, Theor. Comput. Sci. 114 (1) (1993) 149–171.
[32] U. Montanari, M. Pistore, Concurrent semantics for the pi-calculus, Electron. Notes Theor. Comput. Sci. 1 (1995) 411–429.
[33] M. Mukund, M. Nielsen, CCS location and asynchronous transition systems, in: FSTTCS, in: LNCS, vol. 652, Springer, 1992, pp. 328–341.
[34] M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains, in: Semantics of Concurrent Computation, in: LNCS, vol. 70, Springer, 1979,

pp. 266–284.
[35] H. Normann, C. Johansen, T. Hildebrandt, Non-interleaving Operational Semantics for the Pi-Calculus (Long Version), Technical Report 453, Dept. Info.,

University of Oslo, 2016, http://heim .ifi .uio .no /~cristi /papers /TR453 .pdf.
[36] V.R. Pratt, Modeling concurrency with geometry, in: POPL’91, 1991, pp. 311–322.
[37] P. Quaglia, The pi-calculus: notes on labelled semantics, Bull. Eur. Assoc. Theor. Comput. Sci. 68 (1999) 104–114.
[38] D. Sangiorgi, Locality and interleaving semantics in calculi for mobile processes, Theor. Comput. Sci. 155 (1) (1996) 39–83.
[39] D. Sangiorgi, D. Walker, The π -Calculus: A Theory of Mobile Processes, Cambridge Univ. Press, 2001.
[40] M.W. Shields, Concurrent machines, Comput. J. 28 (5) (1985) 449–465.
[41] I. Ulidowski, I. Phillips, S. Yuen, Concurrency and reversibility, in: Proceedings Reversible Computation: 6th International Conference, RC 2014, Kyoto,

Japan, July 10–11, 2014, in: LNCS, vol. 8507, Springer, 2014, pp. 1–14.
[42] R. van Glabbeek, U. Goltz, Refinement of actions and equivalence notions for concurrent systems, Acta Inform. 37 (4/5) (2001) 229–327.
[43] R. van Glabbeek, G. Plotkin, Configuration structures, event structures and Petri nets, Theor. Comput. Sci. 410 (41) (2009) 4111–4159.
[44] R.J. van Glabbeek, On the expressiveness of higher dimensional automata, Theor. Comput. Sci. 356 (3) (2006) 265–290.
[45] D. Varacca, N. Yoshida, Typed event structures and the linear π -calculus, Theor. Comput. Sci. 411 (19) (2010) 1949–1973.
[46] G. Winskel, Events, causality and symmetry, Comput. J. 54 (1) (2011) 42–57.
[47] G. Winskel, M. Nielsen, Models for concurrency, in: S. Abramski, D. Gabbay, T. Maibaum (Eds.), Handbook of Logic in Computer Science, Oxford, 1995,

pp. 1–148.

http://refhub.elsevier.com/S2352-2208(17)30224-9/bib416365746F39347374617469635F6C6F63s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4172616E64614750563036s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4172616E64614750563036s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6265646E6172637A796B3838415453s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib31317073695F6A6F75726E616Cs1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib31317073695F6A6F75726E616Cs1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib426F7265616C65533935s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib626F7265616C653139393866756C6C79s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib626F75646F6C31393934666C6F77s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib426F75646F6C43484B39345F64796E616D6963s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib42757369473935s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43617374656C6C616E693935s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43617374656C6C616E6948616E64626F6F6B43686170746572s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43617474616E69533030s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib63617474616E69323030346D6F64656C73s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib72656631s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib72656631s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib636F72726164696E69313939376C6F63616C697479s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43726166615659303770694553s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43726166615659303770694553s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43726166615659313270694553s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib43726166615659313270694553s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6372697374657363753135s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6372697374657363753135s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6B726976696E65313372657665727369626C655069s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6B726976696E65313372657665727369626C655069s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib646567616E6F507269616D693939s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib456E67656C66726965743936s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib68696C64656272616E64747068643939s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib48696C64656272616E64744A4E3137s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib48696C64656272616E64744A4E3137s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4A61676164656573616E4A3935s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4A61676164656573616E4A3935s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib5031356A6C616D705F5354s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6B6965686E31393934636F6D706172696E67s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib72657665727369626C65484F7069s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib636373s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6D696C6E657239397069626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib6D696C6E65723932706963616C63756Cs1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4D696C6E657250573933s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4D6F6E74616E617269503935s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4D756B756E644E3932434353s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4E69656C73656E505737396576656E7473747275637475726573s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib4E69656C73656E505737396576656E7473747275637475726573s1
http://heim.ifi.uio.no/~cristi/papers/TR453.pdf
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib70726174743931686461s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib517561676C69613939706953796E746178s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib53616E67696F726769393664796E616D69635F6C6F63s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib73616E67696F72676977616C6B657230327069626F6F6Bs1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib536869656C64733835415453s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib556C69646F77736B6932303134s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib556C69646F77736B6932303134s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib476C61626265656B473031726566696E656D656E74s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib476C61626265656B503039636F6E666967537472756374s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib476C61626265656B3036484441s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib76617261636361323031307479706564s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib57696E736B656C313173796D6D65747279s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib77696E736B656C39356D6F64656C7343617465676F7279s1
http://refhub.elsevier.com/S2352-2208(17)30224-9/bib77696E736B656C39356D6F64656C7343617465676F7279s1

	A stable non-interleaving early operational semantics for the pi-calculus
	1 Introduction
	2 Non-interleaving early operational semantics
	2.1 Pi-calculus syntax and standard interleaving semantics
	2.2 Early non-interleaving operational semantics
	2.3 Structural dependencies
	2.4 Link dependencies

	3 Correctness results and discussion of difference between late and early semantics
	4 Early labelled asynchronous transition systems semantics of pi-calculus
	5 Conclusion and related work
	Acknowledgements
	References

