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Abstract. Pushdown systems (PDSs) are a natural model for sequential
programs, but they can fail to accurately represent the way an assembly
stack actually operates. Indeed, one may want to access the part of the
memory that is below the current stack or base pointer, hence the need
for a model that keeps track of this part of the memory. To this end, we
introduce pushdown systems with an upper stack (UPDSs), an extension
of PDSs where symbols popped from the stack are not destroyed but
instead remain just above its top, and may be overwritten by later push
rules. We prove that the sets of successors post™ and predecessors pre*
of a regular set of configurations of such a system are not always regular,
but that post™ is context-sensitive, so that we can decide whether a single
configuration is forward reachable or not. In order to under-approximate
pre* in a regular fashion, we consider a bounded-phase analysis of UPDSs,
where a phase is a part of a run during which either push or pop rules
are forbidden. We then present a method to over-approximate post™ that
relies on regular abstractions of runs of UPDSs. Finally, we show how
these approximations can be used to detect stack overflows and stack
pointer manipulations with malicious intent.

Keywords: pushdown systems, reachability analysis, stack pointer, fi-
nite automata

1 Introduction

Pushdown systems were introduced to accurately model the call stack of a pro-
gram. A call stack is a stack data structure that stores information about the
active procedures of a program such as return addresses, passed parameters and
local variables. It is usually implemented using a stack pointer (sp) register that
indicates the head of the stack. Thus, assuming the stack grows downwards,
when data is pushed onto the stack, sp is decremented before the item is placed
on the stack. For instance, in 286 architecture sp is decremented by 4 (pushing
4 bytes). When data is popped from the stack, sp is incremented. For instance,
in 286 architecture sp is incremented by 4 (popping 4 bytes).

However, in a PDS, neither push nor pop rules are truthful to the assembly
stack. During an actual pop operation on the stack, the item remains in memory
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and the stack pointer is increased, as shown in Figures [l and 2] whereas a PDS
deletes the item on the top of the stack, as shown in Figures Bl and [l

L[] ]
Fig.1: The original stack. Fig. 2: The stack after one pop.
b c d c d
Fig. 3: The original PDS stack. Fig.4: The PDS stack after one pop.

This subtle difference becomes important when we want to analyze programs
that directly manipulate the stack pointer and use assembly code. Indeed, in
most assembly languages, sp can be used like any other register. As an example,
the instruction mov eax [sp — 4] will put the value pointed to at address sp — 4
in the register eax (one of the general registers). Since sp — 4 is an address above
the stack pointer, we do not know what is being copied into the register eax,
unless we have a way to record the elements that had previously been popped
from the stack and not overwritten yet. Such instructions may happen in mali-
cious assembly programs: malware writers tend to do unusual things in order to
obfuscate their payload and thwart static analysis.

Fig.5: The original UPDS stacks.  Fig.6: The UPDS stacks after one pop.

Thus, it is important to record the part of the memory that is just above
the stack pointer. To this end, we extend PDSs in order to keep track of this
upper stack: we introduce a new model called pushdown system with an upper
stack (UPDS) that extends the semantics of PDSs. In a UPDS, when a letter is
popped from the top of the stack (lower stack from now on), it is added to the
bottom of a write-only upper stack, effectively simulating the decrement of the
stack pointer. This is shown in Figures Bl and [6] where after being popped, b is
removed from the lower stack (on the right) and added to the upper stack (on
the left) instead of being destroyed. The top of the lower stack and the bottom
of the upper stack meet at the stack pointer.

We prove that the following properties hold for the class of UPDSs:

— the sets of predecessors and successors of a regular set of configurations are
not regular; however, the set of successors of a regular set of configurations
is context-sensitive;
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— the set of predecessors is regular given a limit of k phases, a phase being a
part of a run during which either pop or push rules are forbidden; this is an
under-approximation of the actual set of predecessors;

— an over-approximation of the set of successors can be computed by abstract-
ing the set of runs first;

We then show that the UPDS model and the approximations of its reacha-
bility sets can be used to find errors and security flaws in programs.
This paper is the full version of [PDTTT].

Paper outline. We define in Section 1 a new class of pushdown systems called
pushdown systems with an upper stack. We prove in Section 2 that neither the
set of predecessors nor the set of successors of a regular set of configurations
are regular, but that the set of successors is nonetheless context-sensitive. Then,
in Section 3, we prove that the set of predecessors of an UPDS is regular given
a bounded-phase constraint. In Section 4, we give an algorithm to compute an
over-approximation of the set of successors. In Section 5, we show how these
approximations could be applied to find errors or security flaws in programs.
Finally, we describe the related work in Section 6 and show our conclusion in
Section 7.

2 Pushdown systems with an upper stack

Definition 1 (pushdown system with an upper stack). A pushdown sys-
tem with an upper stack (UPDS) is a triplet P = (P, I, A) where P is a finite set
of control states, I is a finite stack alphabet, and A C PxI'x Px ({eyul’ul?)
a finite set of transition rules.

We further note Apop = ANP X I'X P x {e}, Aswiteh = ANP XTI x Px 1T,
and Apysn = ANP XTI xPx T2 If§= (pwp,w) e A, we write § =
(p,w) = (p',w’). In a UPDS, a write-only upper stack is maintained above the
stack used for computations (from then on called the lower stack), and modified
accordingly during a transition.

For x € I' and w € I'*, |w|, stands for the number of times the letter x
appears in the word w, and w’ for the mirror image of w. Let I' be a disjoint
copy (bijection) of the stack alphabet I'. If x € I" (resp. I'*), then its associated
letter (resp. word) in I" (resp. I'*) is written Z.

A configuration of P is a triplet (p,w,,w;) where p € P is a control state,
wy, € I'" an upper stack content, and w; € I'* a lower stack content. Let Confp =
P x I'* be the set of configurations of P.

A set of configurations C of a UPDS P is said to be regular if for all p € P,
there exists a finite-state automaton A, on the alphabet I'UI” such that £(A,) =
{wywy | (p,wy,w;) € C}, where L(A) stands for the language recognized by an
automaton A.

From the set of transition rules A, we can infer an immediate successor

relation —p= ( |J i) on configurations of P, which is defined as follows:
deA
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Switch rules: if § = (p,7) = (1',7') € Asusten, then Yo, € I* and Yy € I,

(D, Way, ywY) 2, (p', Wy, y'wy). The top letter v of the lower stack is replaced
by 7/, but the upper stack is left untouched (the stack pointer doesn’t move).
Pop rules: if § = (p,v) = (p',e) € Apop, then Yw, € I' and Yw; € I'*,

(D, Way, ywy) 2 (p', wyy,w;). The top letter v popped from the lower stack
is added to the bottom of the upper stack (the stack pointer moves to the
right), as shown in Figure [1

Push rules: if 6 = (p,v) = ',7'Y") € Apusn, then Yw, € I'*, Yw, € I'*,

101

(p.e,ywr) S (0 e,9"y"wy) and Va € I', (p,wy, awr) = (pf,wy, v'y"wn). A
new letter b is pushed on the lower stack, and a single letter is deleted from
the bottom of the upper stack in order to make room for it, unless the upper
stack was empty (the stack pointer moves to the left), as shown in Figure [

Y|P | Y | Y2 | 8 — MY | P 2|8

Fig.7: Semantics of pop rules.

M| P Y| s - Mmooy s

Fig.8: Semantics of push rules.

The reachability relation =p is the reflexive and transitive closure of the
immediate successor relation —p. If C is a set of configurations, we introduce
its set of successors post*(P,C) ={ce PxI'*x I'* |3 € C,d =p ¢} and its
set of predecessors pre*(P,C) ={ce€ P x I x I'* | 3¢ € C,c =p '}. We may
omit the variable P when only a single UPDS is being considered.

For a set of configurations C, let Cjoyy = {{p, w1) | Jw,, € I'*, (p,wy,w;) € C}
and Cup = {(p,wu) | Fw € T'*, (p,wy,wr) € C}. We then define post;,,(P,C) =
(post™(P,C))up, as well as post;, (P, C), pre;,(P,C) and prej,,, (P,C) in a similar
fashion.

A finite run r of P from a configuration ¢ € Confp is a finite sequence of
configurations (¢;)i—o,....n such that cg = ¢ and ¢ 12N c1 REY Cy... I ¢n, where
t = (t;)i=1,....n is a sequence of transitions in A*, also called the trace of r. We
then write ¢g :t>7> Cn, OF Co = ¢ (Cp is reachable from cg in n steps).

We say that r is a run of P from a set of configurations C if and only if 3c € C
such that r is a run of P from c. Let Runs(P,C) (resp. Traces(P,C)) be the set
of all finite runs (resp. traces) of P from a set of configurations C.

A UPDS and a PDS indeed share the same definition, but the semantics of
the former expand the latter’s. For a set C C P x I'* of lower stack configurations
(the upper stack is ignored) and a UPDS P, let posts, .(P,C) and pret,,(P,C)
be the set of forward and backward reachable configurations from C using the
PDS semantics. The following lemmas hold:
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Lemma 2. Given a UPDS P = (P,I',A) and a set of configurations C, t is a
trace from C with respect to the UPDS semantics if and only if t is a trace from
Ciow with respect to the standard PDS semantics.

Lemma 3. Given ¢ UPDS P = (P,I,A) and a set of configurations C, posty,,,
(P,C) = postt, (P, Ciow) and prej,. (P,C) = prek, (P, Ciow)-

Lemmas Pl and [3] are true because, if we ignore the upper stack, a PDS and
a UPDS share the same semantics.

3 Reachability properties

As shown in [BEMI97[EHRSO0], we know that pre},, and post},, are regular for
a regular set of starting configurations. We prove that these results cannot be
extended to UPDSs, but that post* is still context-sensitive. This implies that
reachability of a single configuration is decidable for UPDSs.

3.1 post* is not regular

The following counterexample proves that, unfortunately, post*(P,C) is not al-
ways regular for a given regular set of configurations C and a UPDS P. The
intuition behind this statement is that the upper stack can be used to store sym-
bols in a non-regular fashion. The counter-example should be carefully designed
in order to prevent later push operations from overwriting these symbols.

Let P = (P, I, A) be a UPDS with P = {p,p'},I" = {a,b,2,y, L}, and A
the following set of pushdown transitions:

(SI> (p,l‘) — (pv a’) (Ra) (paa) — (pa€>
(Sy) (p,y) = (p,b) (Be) (p,b) = (pse)
(C) (p,a) = (p,ad) (E) (p,L) = (', 1)

Let C = {p} x {e} x x(yz)* L be a regular set of configurations. We can compute
a relevant subset L of post*(C):

Lemma 4. L = {{p’,a"b", 1), n € N} C post*(C).
Proof. We prove that (p, e, z(yz)" L) = (p,a™* 14", 1) by induction on n.

Basis: (p,e,zl) = (p,e,al) = (p,a,L).

Induction step: if (p, e, (zy)"z L) = (p,a" ", L), since the only rule able
to read or modify the symbol L is (E) but it has not been applied as the
PDS would end up in state p’, we have (p, e, (zy)"z) = (p,a""1b", €), hence,
(p,e, (xy)"al) = (p,a™ 1", yx ).

Sy RpS,C" !
However, (p,a™t1b" yxl) "= {p,a™ ! ab™™ 1) and also (p,a™*?

RERn+1
ab™t 1) "= (p,a™T2p" Tt 1). From there, we have (p,a™*1b" 1) X

(p',a"*o", L).

3
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Hence, (p', a" 10", 1) € post*(C),Vn € N.
Then, we prove an inequality that holds for any configuration in post*:
Lemma 5. V(p, w,,w;) € post*(C), w = wywy, |w|, + |wl; +1 > |w|, + |w],.

Proof. The only rule in A that can add a letter a to the whole stack is 5.
However, in order to apply it more than once, a x deeper in the lower stack must
be reached beforehand, and the only way to do so is by switching a y to a b and
popping said b, hence, adding a b to the whole stack.

Moreover, the number of b in the whole stack keeps growing during a com-
putation, since no rule can switch a b on the lower stack or delete it from the
upper stack. The inequality therefore holds.

If we suppose that post*(C) is regular, then so is the language Lp,, where
L = {wywy | (p/, wy, w;) € post*(C)}, and by the pumping lemma, it admits a
pumping length k. We want to apply the pumping lemma to an element of L in
order to generate a configuration that should be in post* but does not comply
with the previous inequality.

According to Lemma [l L C post*(C) and as a consequence the word w =

a*+1pk 1 is in LP'. Hence, if we apply the pumping lemma to w, there exist
z,y,2 € (C'UT)* such that w = xyz, |zy| < k, |y| > 1, and 2y*z € post*(C),
Vi > 1. As a consequence of w’s definition, z,y € a* and z € (a + b)*.

Hence, for i large enough, w; = zy'z € LP and |w;|, > |wi|; + 1. By Lemma
[, this cannot happen and therefore neither LP" nor post*(C) are regular.

It should be noted that Lﬁ/p is not regular either. Indeed, from the definition
of P and C, it is clear that V{(p', wy,w;) € post*(C),w; = L, so Lﬁ;, and L?" are
in bijection. We have therefore proven the following theorem:

Theorem 6. There exist a UPDS P and a reqular set of configurations C for
which neither post*(C) nor posty,,(C) are regular.

3.2 pre* is not regular

We now prove that pre* is not regular either. Let P = (P, I, A) be a UPDS with
P ={p}, " ={a,b,c}, and A the following set of pushdown transitions:

(CO) (p,c) — (p7 ab) (Ra) (paa’) — (p,g)
(C1) (p,c) = (p,cb) (Ro) (p,]) — (pye)

We define the regular set of configurations C = {p} x (ab)* x {c} and again,
compute a relevant subset of pre*(C):

Lemma 7. L = {(p,b", c"c), n € N} C pre*(C).

Proof. By induction on n, we can prove that (p,b", c"c) = (p, (ab)", ¢), proving
the induction step by using the fact that (p, b1 c"2) = (p, abb™, c"c).
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Given the rules of P, the following lemma is verified:
Lemma 8. If (p,b™,c") =% (p,wy, wy), then |wy|, + |wi], < n.

Proof. The only rule that can add an a to the whole stack is Cy and it replaces
a c on the lower stack by ab. Hence, during a computation, one cannot create
more a than there were ¢ in the initial configuration. The inequality therefore
holds.

If pre*(C) is regular, so is LP = {w,w; | (p,wy,w;) € pre*(C)}, and by
the pumping lemma, it admits a pumping length k. Moreover, by lemma [7
w = bkckce LP,

If we apply the pumping lemma to w, there exist x,y, z € (I'UI')* such that
w = zyz, |[vy| <k, |yl > 1 and w; = zy'z € pre*(C), Vi > 1. As a consequence
of w’s definition, z,y € b* and z € b*cFe.

Since w; € LP, Vi > 1, there exists an integer n; such that w; = ¢; =
(ab)™ic. Moreover, the size of the stack must grow or remain constant during

. =1 . .
a computation, hence |¢;| > |w;| and n; > % Since words in the sequence

(w;); are unbounded in length, the sequence (n;); must be unbounded as well.
However, by Lemma 8 n; = ¢, < |wi|, =k + 1.
Hence, there is a contradiction and pre*(C) is not regular.

Theorem 9. There exist a UPDS P and a regqular set of configurations C for
which pre*(C) is not regular.

3.3 post* is context-sensitive

We prove that, if C is a regular set of configurations of a UPDS P, then post*(P,C)
is context-sensitive. This implies that we can decide whether a single configura-
tion is reachable from C or not.

We show that the problem of computing post*(P,C) can be reduced without
loss of generality to the case where C contains a single configuration. To do so,
we define a new UPDS P’ by adding new states and rules to P such that any
configuration ¢ in C can be reached from a single configuration cg = (pg, ¢, $).
Once a configuration in C is reached, P’ follow the same behaviour as P.

Theorem 10. For each UPDS P = (P,I',A) and each regular set of configu-
rations C on P, there exists a UPDS P’ = (P', T UT' U{$},A"), P C P’, and
ps € P\ P such that post*(P,C) = post*(P',{{ps,&,$)}) N (P x ['* x I'*).

Proof. Our intuition is to build configurations in C in three steps: from cg, push
the word w,w; on the stack by using push rules mimicking a finite automaton
accepting the regular set C, switch each symbol in I” to its equivalent letter in I”
and then pop it in order to write w, on the upper stack, then move to the right
state p.

Since C is regular, so is Vp € p the language {w,w; | (p, wy,w;) € C}. Consider
A, = (I'UTL,Qp, Ep, I, F,) such that £(A,) = {(w,w)® | (p,wy, w;) € C}. The
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mirror image is needed because the bottom of lower stack should be pushed first
and the top of upper stack last. Without loss of generality, we suppose that
I, = {ip}, F, = {fp}, ps ¢ Qp, Qp N P = 0 and that no edge in E, ends in i,
nor starts in fj,.

We define the UPDS P’), = (Qp U{ps, p, p-}, TUT'U{$}, A)), where pr ¢ Q,
and the following rules belong to Aj:

Rules from A,: for all z € 'U T, if ¢ ﬁz};ﬂp ¢’ in the automaton A, then
(ps,$) — (¢,7) € A, if ¢ = ip, and y € I'U I, (¢y) = (¢,zy) € A
otherwise. These rules are used to build the stack and mimicks transitions in
Ap; symbols that will end on the upper stack are stored on the lower stack.

Setting the upper stack: for all z € I, (f,,Z) — (pr, ) € Al and (pr,z) —
(fp:€) € A}, Each symbol & on the top of the lower stack is switched to its
equivalent symbol in I" then popped in order to end on the upper stack.

Moving to state p: for all z € I', (fp,z) — (p,z) € Aj,. Once the upper stack
has been defined and the lower stack is being read, the UPDS moves to state
p in order to end in a configuration in C.

The UPDS P’,, follows the three steps previously outlined: push w,w; on the
lower stack, so that it is in a configuration (f,, &, w,w), then move to (pr, wy,, wi)
by switching and popping the symbols in I", and end in (p, w,, w;).

We then introduce P’ = ( L€JPP; UPT"UTU{$}, LEJPA; U A). From cg, P’

P P
can reach any configuration of C using the rules of the automata (P’,),cp, then

follow the rules of P. P’ therefore satisfies Theorem [I0l

Using this theorem, we can focus on the single starting configuration case.
We assume for the rest of this subsection that C = {cg}, ps € P, and $ € I". We
now formally define context-sensitive grammars:

Definition 11. A grammar G is a quadruplet (N, X, R, S) where N is a finite
set of mon terminal symbols, X a finite set of terminal symbols with NN X = (),
RC(NUX)*N(NUX)* x (NUX)* a finite set of production rules, and S € N
a start symbol.

We define the one-step derivation relation --+g on a given grammar G: if
dp,g € (NUX)* p = g € R then Vo = upv,y = uqv € (NU X)*, © --+g y.
The derivation relation --»§ is its transitive closure. The language £(G) of a
grammar is the set {w € Y* [ § --»§ w}. We may omit the variable G when
only a single grammar is being considered.

A grammar is said to be context-sensitive if each productions rule r € R is
of the form aAB — ayB where o, € (NUX)*, v € (NUX)T, and A € N.
A language L is said to be context-sensitive if there exists a context-sensitive
grammar G such that £(G) = L.

The following theorem is a well-know property of context-sensitive languages
detailed in [HMRUOQQ]:
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Theorem 12. Given a context-sensitive language L and a word w € X, we
can effectively decide whether w € L or not.

We can compute a context-sensitive grammar recognizing post*. Our intu-
ition is to represent a configuration (p,w,,w;) of P by a word Tw,pw;L of a
grammar G. We use Theorem [I0] so that the single start symbol of G can be
matched to a single configuration cg. The context-sensitive rules of G mimic the
transitions of the UPDS. As an example, a rule § = (p,a) — (p/,€) € Apop can
be modelled by three rules pa --+g pgs, pgs --+¢g ags, and ags --+g ap’ such
that pa --»§ ap’, where --»+g stands for the one-step derivation relation and gs
is a nonterminal symbol of G.

Let us define this context-sensitive grammar G = (N, X, R, S) more precisely:

Start symbol: S is the start symbol.

Nonterminal symbols: let N = {S} U ' U P U Agpiten U Apop U Apusn ¥
{0,1}. P is a disjoint copy (bijection) of the state alphabet P. In order to
properly simulate transitions rules in A with context-sensitive production
rules, nonterminal symbols related to these transitions are needed.

Terminal symbols: ¥ ={T,L}UPUT. ~

Production rules: R = Rp U Ryjna U {S — Tpg$L}; the last rule initializes
the starting configuration of P.

The production rules in Rp simulate the semantics of the UPDS as defined
by its transition rules A. For each switch rule 6 : (p,a) = (p,b) € Aswiteh, the
following grammar rules belong to Rp in order to allow pa --»¢ p'b:

(r§) pa — ba (r}) 6@ — &b (r) 6b — p'b

For each pop rule ¢ : (p,a) — (p',e) € Apyp, the following grammar rules
belong to Rp in order to allow pa --»% ap”:

(r}) pa — po () p6 — ab (r) ad — ap’
For each push rule ¢ : (p,a) — (p/,bc) € Apush, the following grammar rules
belong to Rp in order to allow xpa --»3 p'bc and Tpa --»§ Tp'be:

(Tg) pa — dpa Vx €T, (Tf’m) Zdy — 9100
(7)o — Toidy (1) 61603 — 81808
(Tg) 51505 — 5166 (7’?) 5166 — ];/BE
It is worth noting that, once a production rule Tg has been applied, there is
no other derivation possible in Rp but to apply the other production rules (rf )i
in the order they’ve been defined until a state symbol in P has been written
again by rfc. This sequence simulates a single transition rule of the UPDS P.
Finally, the rules in Rfinq merely switch symbols in I"'U P to their equivalent
letters in X in order to generate a terminal word, starting with the state symbol
to prevent any further use of Rp:

vpeP  (r]™)  pop
Ve,yec ' UP (r%f;al) barry — xy
Vm,yEFUP(rgfgal) YT — yT
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Once a rule Tgi"“l has been applied, the only production rules available for
further derivations are in R¢inqi.
We prove that £(G) is in bijection with post*({cs}).

Lemma 13. If (p, w,,w;) € post*({cs}), then from S we can derive the nonter-
minal word Tw,pw; L in G, and Tw,pw; L € L(G).

Proof. By induction on n, we must prove that if ¢g =" (p, w,,,w;), then we can
derive in G the nonterminal word Tw,pw;_L.

Basis: we have S — Tpg$.L.

Induction step: if ¢ =" (p, wy, w;) 2 (p',wh,, w)), then the nonterminal word
Tw,pw; L can be derived from S in G by the induction hypothesis. From this
word, we can further derive Tw/p’ 152 1 using the production rules rg, e ,rfc
associated with the transition rule §.

Finally, from any non terminal word of the form Tw,pw; L, we can derive in G
a terminal Tw,pw;L using rules in Rynal.

Moreover, by design of the grammar G, the following lemma holds:
Lemma 14. If S --»* Twy,pw L, wy,w; € I'*, p € P, then (p,wy,w;) €
post™({cs}).

Hence, the following result holds:

Theorem 15. Given a UPDS P and a reqular set of configurations C, we can
compute a context-sensitive grammar G such that (p,w,,w;) € post*(P,C) if and
only if Tw,pw; L € L(G)

Since the membership problem is decidable for context-sensitive grammars,
the following theorem holds:

Theorem 16. Given a UPDS P, a regular set of configurations C, and a con-
figuration ¢ of P, we can decide whether ¢ € post*(P,C) or not.

Unfortunately, this method cannot be extended to pre* due to a property
of context-sensitive grammars: each time a context-sensitive rule is applied to
a nonterminal word to produce a new word, the latter is of greater or equal
length than the former. The forward reachability relation does comply with this
monotony condition, as the combined size of the upper and lower stacks can only
increase or stay the same during a computation, but the backward reachability
relation does not.

4 Under-approximating pre*

Under-approzimations of reachability sets can be used to discover errors in pro-
grams: if X is a regular set of forbidden configurations of a UPDS P, C a regular
set of starting configurations, and U C pre*(X) a regular under-approximation,
then U NC # () implies that a forbidden configuration can be reached from the
starting set, as shown in Figure [0 The emptiness of the above intersection has
to be decidable, hence, the need for a regular approximation.
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pre’(X)

Fig.9: Using an under-approximation.

4.1 Multi-stack pushdown systems

Multi-stack pushdown systems (MPDSs) are pushdown systems with multiple
stacks.

Definition 17 (La Torre et al. [TMPO07]). A Multi-stack pushdown system
(or MPDS) is a quadruplet M = (P,I,l, A) where P is a finite set of control
states, I' is a finite stack alphabet, | is the number of stacks, and A C P x I' x
{1,...,1} x P x I'* a finite set of transition rules.

For a given transition of a MPDS, in a given control state, only one stack is
read and modified. A rule of the form (p,w,n) — (p’,w’) is applied to the n-th
stack with semantics similar to those of common pushdown systems.

A configuration of M is an element of P x (I'*)!. A set of configurations C
is said to be regular if for all p € P, there exists a finite-state automaton A, on
the alphabet {#} U I such that £L(Ap) = {wi#...#w | (p,w1,...,w) € C}.

We define a successor relation < on configurations. If § = (p,a,i) —

(p’,w) € A, then for each configuration ¢ = (p,ws,...,w;) such that w; = az,
5 . .

we have ¢ < (p/,wi,...,w;) where w; = wr and w} = w; if j # i. =7 is the

5
reflexive and transitive closure of the relation <= ( |J <). We may ignore
deA
the variable M if only a single MPDS is being considered.

For a given set of configurations C of a MPDS M, we define its set of prede-
cessors pre;pps(M,C) = {c € P x (I'*)!| 3¢’ € C,c —* '}
A run r of M from a configuration cy is a sequence of configurations r =
to

t tn .
(¢i)i=1,...n € A* such that ¢ B oep > eg... < ¢, where t = (ti)i=1,.n is a

sequence of transition rules of M called the trace of r. We then write c¢g < Cn.

Multi-stack automata are unfortunately Turing powerful, even with only two
stacks. La Torre et al. thus introduced in [TMPO7] a new restriction called phase-
bounding:

Definition 18. A configuration ¢’ of M is said to be reachable from another
configuration c¢ in k phases if there exists a sequence of runs ri,ra,...rE with

. i1 23 ,
matching traces ty,ta, ...t such that co — c1... — ¢ where cg = ¢, ¢ = ',
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(¢i)i=1,...k is a sequence of configurations on M and where during the execution
of a given run r;, at most a single stack is popped from. We note ¢ =%, , .

We then define prefppo(M,C,k) = {c € P x (I'")! | 3¢ € C,c =5, '}
The following theorem has been proven in [Set10]:

Theorem 19. Given a MPDS M and a regular set of configurations C, the set
pretps(M,C, k) is reqular and effectively computable.

4.2 Application to UPDSs

The notion of bounded-phase computations can be extended to UPDSs. A run
r of P is said to be k-phased if it is of the form: » = ry - ro... 7, where Vi €
{1,...,k}, 7 € (Apush U Agwiten)™ U (Apop U Agwiten)™. During a phase, one
can either push or pop, but can’t do both. Such a run has therefore at most k
alternations between push and pop rules. We can extend this notion to traces.

The k-bounded reachability relation = is defined as follows: ¢y = ¢ if
there exists a k-phased run r on P with a matching trace ¢ such that cg L .
Using this new reachability relation, given a set of configurations C, we can define
pre*(P,C, k).

We can show that a UPDS P can be simulated by a MPDS M with two
stacks, the second stack of M being equivalent to the lower stack, and the first
one, to a mirrored upper stack followed by a symbol L that can’t be popped
and is used to know when the end of the stack has been reached. Elements of
P x I'* x I'* can equally be considered as configurations of P or M, assuming in
the latter case that we consider the mirror of the first stack and add a L symbol
to its bottom. Thus:

Lemma 20. For a given UPDSP = (P, I, A) and a regular set of configurations
C, there exists a MPDS M, a reqular set of configurations C', and L ¢ I" such
that (p,wl 1 w;) € pret,,o M,C' k)N (P x I'* x I'*) if and only if (p,w.,w;) €
pre*(P,C, k).

Proof. Following the above intuition, we define a two-stack pushdown system
M = (PUApusn U Apop, ' U{L},2, A") where A’ has the following rules:

Switch rules: if § = (p,a) — (q,b) € Agwiten, then (p,a,2) — (q,b) € A'.

Pop rules: if § = (p,a) = (¢,€) € Apop, then (p,a,2) — (§,¢) € A’ and
(6,2,1) = (q,ax) € A’ for each z € I'U{L}.

Push rules: if § = (p,a) — (q,bc) € Apysn, then we define (p, a,2) — (d,bc) €
A (6,L,1) = (¢g,L) € A" and (6,2,1) — (q,e) € A’ for each z € I'. If we
reach L on the second stack, the upper stack is considered to be empty and
no symbol should be popped from it.

We then define ¢’ = {(p, wZ L, w;) | (p,wy,w;) € C}. M simulates P and C’ is
equivalent to (in bijection with) C.

From Theorem [[9] we get:
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Theorem 21. Given a UPDS P and a regular set of configurations C, the set
pre*(P,C, k) is reqular and effectively computable.

pre*(P,C, k) is then obviously an under-approximation of pre*(P,C).

5 Over-approximating post*

While under-approximations of reachability sets can be used to show that an er-
ror can occur, over-approximations can, on the other hand, prove that a program
is safe from a particular error. If X" is a regular set of forbidden configurations on
a UPDS P, C a regular set of starting configurations, and O 2 post*(C) a regular
over-approximation, then ONX = @ implies that no forbidden configuration can
be reached from the starting set and that the program is therefore safe, as shown
in Figure

post™(C)

Fig. 10: Using an over-approximation.

The emptiness of the above intersection has to be decidable, hence, the need
for a regular approximation.

5.1 A relationship between runs and the upper stack

We prove here that from a regular set of traces of a given UPDS, a regular set
of corresponding upper stacks can be computed. A subclass of programs whose
UPDS model has a regular set of traces would be programs with finite recursion
(hence, with a stack of finite height).

Given a UPDS P = (P, I, A) and a configuration ¢ = (p, w,,w;) of P, we
match inductively to each sequence of transition 7 € A* an upper stack word
v(T,¢) € I'* according to the following rules:

— v(e, ) = wy;

—if 0 = (p,7) = (',7') € Aswiten, then v(7, ¢) = v(7, ¢);

—ifd=(p,7) = (p',e) € Apop, then v(79,¢) = v(7) - a;

—if 6 = (p,v) = @, ¥'Y") € Apusn, then v(7d,¢c) = ¢ if v(r,¢) = ¢, and
v(16,¢) = w if v(7) = wx, where x € I';
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Intuitively, v(7, ¢) is the upper stack content after applying the sequence of
transitions 7, starting from a configuration c¢. Note that 7 may not be an actual
trace of P; v(r) is merely the virtual upper stack built by pushing and popping
values in a write-only manner, regardless of the lower stack, the control states,
and the coherence of the sequence of transitions used. However, if ¢ is indeed a
trace of P, then the upper stack configuration v(t, c) is indeed reachable from ¢
using the trace t.

A sequence of transitions is said to be meaningful if Vp' € P, any transition
ending in state p’ can only be followed by a transition starting in state p’. A
trace of P is obviously a meaningful sequence. A set of sequences of transitions
T is said to be prefiz-closed if, given t € T, any prefix of ¢ is in T as well. The
set of all traces of a given system is obviously prefix-closed.

The following theorem holds:

Theorem 22. For a UPDSP = (P, I, A), a reqular set of configurations C, and
a regqular, prefiz-closed set of meaningful sequences of transitions T C A* of P
from C, the set of upper stack configurations U(T) = {{p’,w.,) | Ic = (p, wy, w;) €
C,3t € T,t starts in state p and ends in state p',v(t,c) = w)} spawned by T
from C is reqular and effectively computable.

Thanks to Theorem [0, we consider the single configuration case where
C = {cg} without loss of generality. Let Ar = (A,Q, E, I, F) be a finite state
automaton such that £(Ar) = T. Since T is meaningful, we can assume that

Q= UPQp where Q,, is such that Vg € Q,, if there is an edge ¢/ i>E q, then the
pe

pushdown rule ¢ is of the form (p’,a) = (p, w). We can also assume that F = Q
since T is prefix-closed.

We introduce the automaton Ay = (I, Q, E', I, F') whose set of transitions £’
is defined by applying the following rules until saturation, starting from E’ = ():

(Spop) if there is an edge go LA ¢1 in Ap and 0 is of the form (p,a) — (p/,¢),
then we add the edge qo = ¢1 to E'.

(Sswiten) if there is an edge go i>E ¢1 in Ay and § is of the form (p,a) — (p',b),
then we add the edge go — ¢ to E.

(Spusn) if there is an edge go i)p; q1 in A, § is of the form (p,a) — (p’,be), and
there is a state ¢ such that either (1) ¢ € Q and ¢ =g/ qo for z € I" or (2)
q € I and ¢ =%,qo, then we add an edge ¢ = ¢; to E'.

We call (EY); the finite, growing sequence of edges created during the saturation
procedure.

Our intuition behind the above construction is to create a new automaton
that uses the states of the sequence automaton but accepts upper stack words
instead: an upper stack word w is accepted by Ay with the path ¢; l>"‘E,q,

where g; € I if and only if Ar accepts a sequence ¢ with the path g; i>*Eq where
t ends in state p and v(t,cg) = w. This property is preserved at every step of
the saturation procedure.
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Indeed, consider a sequence ¢t and w = v(t, ¢g). Suppose that ¢ and w satisfy
the property above: there is a path g¢; i)*qu in Ar and a path ¢; 1>*E,qo in
Ay. Let ¢ i>E ¢1 be a transition of Ar, g1 € Q and § € A. td is a sequence of
transitions in T with a labelled path ¢; i)*qu in A, and in order to satisfy the
above property, a path g; w—,>*E/q1 labelled by w’ = v(td, cg) should exist in Ay
as well.

If 6 € Apop, then w' = v(td, cg) = wa, where a € I'. Rule (Sp,p) creates an
edge qo = ¢q1 in Ay such that there is a path ¢; i>}i;,qo 2 5 q1 labelled by w'.

If § € Agwiten, then w' = v(td,cg) = w. Rule (Sswiten) creates an edge
go = q1 in Ay such that there is a path ¢; —%,q0 — g q1 labelled by w'.

If 6 € Apysy, and w = woz, where z € I', then w’ = v(td, cg) = wo and for
every state ¢ € @ such that ¢; —%%,q = qo, (Spush) adds an edge ¢ 5 oq to
Ay such that there is a path ¢; —%%,q =g ¢ labelled by w'.

Following this intuition, we can prove this lemma:

Lemma 23. For every sequence t such that 3¢; € I, 3¢ € Qp, q i>"‘Eq, then
there exists a path q; —5,q in Ay such that v(t,cg) = w.

On the other hand, we must prove this lemma to get the full equivalence:

Lemma 24. At any step i of the saturation procedure, if q; Eﬁiyq where q; € 1,

then there exists a sequence of transitions t in T such that q; i)*Eq and v(t,cg) =
w.

Proof. We prove this lemma by induction on the saturation step i:

Basis: Ej) = () and the lemma holds.
Induction step: Let ¢; iﬁ;jﬂqg be the i + 1-th transition added to E’. Let

w’ = wx be such that there is a path g; i>*E,_q1 i)p;;“ q2. By induction
hypothesis, there is a sequence ¢t € T such that g; i>*qu and v(t, cg) = w.
If x € I', then there is a rule § € A,,, popping x from the stack such that

@1 25 g2 by definition of the saturation rules. We have v(td, cg) = wxr = w'

and the lemma holds at the ¢ 4 1-th step.

If x = ¢, then the rule d spawning ¢; i)*E, g2 is either a switch or push
i+1

rule. The switch case being similar to the pop case, we will consider that
o€ Apush-
In the first case of the push saturation rule, there exists by definition a state

go such that qq i>E g2 and y € I such that ¢; i>E; qo. Hence, there is
§' € Apop popping y from the stack such that ¢ 5—>*qu. If we consider the

sequence ¢; i)*qu %E Qo i>E g2, then v(td’d, cg) = w = w’ and the lemma
holds at the ¢ + 1-th step. The second case of the push saturation rule is
similar.
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Let £,(Ay) = {w | 3¢ € I,3f € Qp,i — % f} be the set of paths in
Ay ending in a final node related to a state p of P. By Lemmas and 24]
U(R) = {{p,wy) | wy € L,(Ap)}. Since the languages £, are regular and there
is a finite number of them, U(T') is regular as well and can be computed using

Ay

5.2 Computing an over-approximation

The set of traces of a UPDS P = (P, I, A) from a regular set of configurations C
is not always regular. By Lemma 2] traces of P are the same for the UPDS and
PDS semantics. Thus, we can apply methods originally designed for PDSs to over-
approximate traces of a UPDS in a regular fashion, as shown in [BS90,[PW91].

With one of these methods, we can therefore compute a regular over ap-
proximation 7 (P,C) of the set of traces of P from C. Using the saturation
procedure underlying Theorem 22] we can then compute the set U(7T(P,C)) of
upper stack configurations reachable using over-approximated traces of P, hence,
an over-approximation of the actual set of reachable upper stack configurations.

However, we still lack the lower stack component of the reachability set.
As shown in [EHRSO00], posti,.(P,C) is regular and computable, and we can
determine the exact set of reachable lower stack configurations.

We define the set O = {(p,wy,w) | (p,wy) € T(R(P,C)), (p,w:) € posth
(P,C)}. O is a regular over-approximation of post*(P,C).

6 Applications

The UPDS model can be used to detect stack behaviours that cannot be found
using a simple pushdown system. In this section, we present three such examples.

6.1 Stack overflow detection

A stack overflow is a programming malfunction occurring when the call stack
pointer exceeds the stack bound. In order to analyze a program’s vulnerability
to stack overflow errors, we compute its representation as a UPDS P = (P, I, A),
using the control flow model outlined in [EHRS0Q].

Let C = P x T#™ x L be the set of starting configurations, where T € I' is a
top stack symbol that does not appear in any rule in A, # € I' a filler symbol, m
an integer depending on the maximal size of the stack, and L a regular language
of lower stack initial words. Overwriting the top symbol would represent a stack
overflow misfunction. Since there is no such thing as an upper stack in a simple
pushdown automaton, we need a UPDS to detect this error, as shown in Figure
el

Let X = P x (I'\{T}H* x I'* be the set of forbidden configurations where
the top stack symbol has been overwritten. If the intersection of the under-
approximation U of pre*(X) with C is not empty, then a stack overflow does
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T | # [mumes| # || a| b

Fig.11: Using T to bound the upper stack.

happen in the program. On the other hand, if the intersection of the over-
approximation O of post*(C) with the set X’ of forbidden configurations is empty,
then we are sure that a stack overflow will not happen in the program

6.2 Reading the upper stack

Let us consider the piece of code [Tl In line 1, the bottom symbol of the upper
stack sp — 4, just above the stack pointer, is copied into the register eax. In line
2, the content of eax is compared to a given value a. In line 3, if the two values
are not equal, the program jumps to an error state err.

Listing 1.1: Reading the upper stack

mov eax, [sp — 8]
cmp eax, a
je err

Using a simple PDS model, it is not possible to know what is being read.
However, our UPDS model and the previous algorithms provide us with reason-
able approximations which can be used to examine possible values stored in eax,
as shown in Figure

Fig. 12: The stack being read.

To check whether this program reaches the error state err or not, we define
the regular set X = P x I""a x I'* of forbidden configurations where a is present
on the upper stack just above the stack pointer. If the intersection of the under-
approximation of pre* (X) with the set of starting configurations C of the program
is not empty, then eax can contain a critical value, and the program is unsafe.
On the other hand, if the intersection of the over-approximation of post*(C) with
the set X is empty, then the program can be considered safe.

6.3 Changing the stack pointer

Another malicious use of the stack pointer sp would be to change the starting
point of the stack. As an example, the instruction mov sp, sp - 12 changes the
stack pointer in such a manner that, from the configuration of Figure [I3] the
top three elements above it now belong to the stack, as shown in Figure 14l
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Fig. 14: After changing sp.

If we model a program as a UPDS, then using our previous algorithms to
compute approximations of the reachability set would allow us to have an ap-
proximation of the content of the new stack after the stack pointer change.

7 Related work

One way to improve the expressiveness of pushdown automata is to change
the way transition rules interact with the stack. Ginsburg et al. introduced in
[GGHGT] stack automata that can read the inside of their own stack using a
moving stack pointer but can only modify the top. As shown in [HUGS|, stack
automata are equivalent to linear bounded automata (LBA). A LBA is a non-
deterministic Turing machine whose tape is bounded between two end markers
that cannot be overwritten. This model cannot simulate a UPDS whose lower
stack is of unbounded height.

Uezato et al. defined in [UM13] pushdown systems with transductions: in such
a model, a finite transducer is applied to the whole stack after each transition.
However, this model is Turing powerful unless the transducers used have a finite
closure, in which case it is equivalent to a simple pushdown system. When the set
of transducers has a finite closure, this class cannot be used to simulate UPDSs.

Multi-stack automata have two or more stacks that can be read and modified,
but are unfortunately Turing powerful. Following the work of Qadeer et al. in
[QRO5], La Torre et al. introduced in [TMPOT7] multi-stack pushdown systems
with bounded phases: in each phase of a run, there is at most one stack that is
popped from. Anil Seth later proved in [Set1(] that the pre* of a regular set of
configurations of a multi-pushdown system with bounded phases is regular; we
use this result to perform a bounded phase analysis of our model.

2-visibly pushdown automata (2-VPDA) were defined by Carotenuto et all.
in [CMPQ7] as a variant of two-stack automata where the stack operations are
driven by the input word. However, an ordering constraint on the stacks that
prevent a 2-VPDA from simulating a UPDS has to be added in order to solve
the emptiness problem or the model-checking problem.
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8 Conclusion

The first contribution of this paper is a more precise pushdown model of the stack
of a program as defined in Section 1. We then investigate the sets of predecessors
and successors of a regular set of configurations of an UPDS. Unfortunately,
we prove that neither of them are regular. However, we show that the set of
successors is context-sensitive. As a consequence, we can decide whether a single
configuration is forward reachable or not in an UPDS.

We then prove that the set of predecessors of an UPDS is regular given a limit
of k phases, where a phase is a part of a run during which either pop or push
rules are forbidden. Bounded-phase reachability is an under-approximation of the
actual reachability relation on UPDSs that we can use to detect some incorrect
behaviours.

We also give an algorithm to compute an over-approximation of the set of
successors. Our idea is to first over-approximate the runs of the UPDS, then
compute an over-approximation of the reachable upper stack configurations from
this abstraction of runs and consider its product with the regular, accurate and
computable set of lower stack configurations.

Finally, we use these approximations on programs to detect stack overflow
errors as well as malicious attacks that rely on stack pointer manipulations.
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