
ar
X

iv
:1

61
1.

00
60

6v
1

 [
cs

.C
E

]
 3

1
O

ct
 2

01
6

Hybrid CPU-GPU generation of the

Hamiltonian and Overlap matrices in FLAPW

methods

Diego Fabregat-Traver∗, Davor Davidović†,
Markus Höhnerbach∗, and Edoardo di Napoli‡∗

⋆AICES, RWTH Aachen, Germany
†RBI, Zagreb, Croatia

‡JSC and JARA, Jülich, Germany
fabregat@aices.rwth-aachen.de, davor.davidovic@irb.hr,

hoehnerbach@aices.rwth-aachen.de, e.di.napoli@fz-juelich.de

Abstract. In this paper we focus on the integration of high-performance
numerical libraries in ab initio codes and the portability of performance
and scalability. The target of our work is FLEUR, a software for elec-
tronic structure calculations developed in the Forschungszentrum Jülich
over the course of two decades. The presented work follows up on a previ-
ous effort to modernize legacy code by re-engineering and rewriting it in
terms of highly optimized libraries. We illustrate how this initial effort to
get efficient and portable shared-memory code enables fast porting of the
code to emerging heterogeneous architectures. More specifically, we port
the code to nodes equipped with multiple GPUs. We divide our study in
two parts. First, we show considerable speedups attained by minor and
relatively straightforward code changes to off-load parts of the compu-
tation to the GPUs. Then, we identify further possible improvements to
achieve even higher performance and scalability. On a system consisting
of 16-cores and 2 GPUs, we observe speedups of up to 5× with respect to
our optimized shared-memory code, which in turn means between 7.5×
and 12.5× speedup with respect to the original FLEUR code.

1 Introduction

Many legacy codes in scientific computing have grown over time with an eye on
functionality, but little emphasis on portable performance and scalability. Often,
these codes are a direct translation of mathematical formulae, and lack proper
engineering (i.e. modularity, code reuse, etc). One such example is FLEUR, a
software for electronic structure calculations developed at the Jülich Research
Center during the last two decades [3]. In previous work by Di Napoli et al. [2],
the authors made the effort of reengineering a portion of FLEUR’s code base in
an attempt to demonstrate the value of writing the computational bottlenecks in
terms of kernels provided by standardized and highly-tuned libraries. There, they
show an increase in performance and anticipate its portability beyond multi-core
architectures. In this paper, we confirm that the reengineering process indeed

http://arxiv.org/abs/1611.00606v1

guarantees quick portability and high-performance on emerging heterogeneous
architectures, as in the case of multi-core CPUs equipped with one or more
coprocessors such as GPUs.

In times where massively-parallel heterogeneous architectures have become
the most common computing platform, legacy scientific code has to be modern-
ized. New software is often designed with portable efficiency and scalability in
mind, and some old code is undergoing major rewriting to adapt to the newest
architectures. However, there is still a lot of reluctance to undergo through the
rewriting process since it requires a vast initial effort and may incur in validation
issues. While it is understandable that domain scientists are hesitant to intro-
duce major changes into a code developed and tested in the course of many years,
legacy codes that do not go through this process are destined to be marginalized.

A critical insight in writing long-lasting scientific code is to have a modular
design where, at the bottom layers, the computational bottlenecks are written
in terms of kernels available from standardized and highly-tuned libraries. Ex-
amples of such kernels are fast Fourier transforms, matrix products, and eigen-
solvers, provided by a number of commercial as well as academic libraries. The
most prominent example of standard and optimized scientific library is the Basic
Linear Algebra Subprograms (BLAS). This library has its roots in the early re-
alization of the necessity for portable performance. Today, BLAS kernels, which
include matrix products and linear systems, are the building blocks for a mul-
titude of libraries, so much that BLAS is the first library to be ported to and
optimized for every new architecture. Therefore, writing code on top of BLAS
and other standardized and broadly available libraries constitutes a first and
essential step in the modernization of scientific software.

In this paper we follow the same approach illustrated in [2], where the authors
made a major effort to address the computational bottlenecks of the FLEUR’s
code base: the generation of the so-called Hamiltonian and Overlap matrices. In
generating such matrices, the main goal of the original FLEUR code was the
minimization of memory usage. Furthermore there is no notion of abstraction
and encapsulation, and the different modules are tightly coupled. At this point,
low-level optimizations were unfeasible, and the authors opted for a clean slate
approach: starting from the mathematical formulation behind the code, they cast
it in terms of matrix operations supported by the BLAS and LAPACK libraries.
As presented in their results, despite lacking some mathematical insight that
reduced the amount of computation in the FLEUR code, HSDLA (the new
code) outperformed the original one with speedups between 1.5× and 2.5×.
Most importantly, the authors claim that HSDLA could be easily ported to
other architectures.

In this paper, we continue their work, and illustrate how such an initial reengi-
neering effort enables a quick port to heterogeneous architectures consisting of
multi-core CPUs and one or more GPUs. More specifically, we quantify the min-
imal effort required in terms of additional code to attain substantial speedups.
When running on a system equipped with two GPUs, we observe speedups of up
to 5× with respect to HSDLA and about one order of magnitude with respect

to the corresponding FLEUR code. Moreover, we identify the additional work
required to attain close-to-optimal efficiency and scalability, and partially im-
plement it to illustrate the idea. Finally, beyond the results specific to the case
of FLEUR, the main contribution of this paper is to demonstrate that, despite
the major initial effort, a reengineering of legacy codes is not only worth it but
imperative in order to obtain long-lasting portable performance and scalability.

This paper is organized as follows. Section 1.1 provides the background on
Density Functional Theory (DFT) and the math behind the computation to
generate the Hamiltonian and Overlap matrices. Section 2 gives an overview of
the optimized algorithm behind HSDLA for the generation of these matrices. In
Sec. 3 we discuss the porting of the code to heterogeneous architectures, including
a review of the available BLAS libraries for GPUs and a simple analysis of
the computation to decide which portions of the code to off-load to the GPUs.
Section 4 presents experimental results for 1, 2 and 4 GPUs, and points at
potential improvements to the hybrid code. Finally, Sec. 5 draws conclusion and
discusses future research directions.

1.1 DFT, FLAPW and the H and S matrices

The FLEUR code is based on the widely accepted framework of Density Func-
tional Theory (DFT). In the last decade, Density Functional Theory (DFT) [6,7]
has become the “standard model” in Materials Science. Within the DFT frame-
work, it is possible to simulate the physical properties of complex quantum
mechanical systems made of few dozens up to few hundreds of atoms. The core
of the method relies on the simultaneous solution of a set of Schrödinger-like
equations. These equations are determined by a Hamiltonian operator Ĥ con-
taining an effective potential V0[n] that depends functionally on the one-particle
electron density n(r). In turn, the solutions of the equations ψi(r) determine the
one-particle electron density n(r) used in calculating the effective potential V0.

Ĥψi(r) =
(

− ~
2

2m∇2 + V0(r)
)

ψi(r) = ǫiψi(r) ; ǫ1 ≤ ǫ2 ≤ . . .

n(r) =
∑N

i |ψi(r)|
2

(1)

In practice, this set of equations, also known as Kohn-Sham (KS) [5], is
solved self-consistently; an initial guess for n0(r) is used to calculate the effective
potential V0 which, in turn, is inserted in Eq. (1) whose solutions, ψi(r), are used
to compute a new charge density n1(r). Convergence is checked by comparing the
new density to the starting one. When convergence is not reached, an opportune
mixing of the two densities is selected as a new guess, and the process is repeated.
This is properly called a Self-Consistent Field (SCF) iteration.

In principle, the theory only requires as input the quantum numbers and the
positions of the atoms that are part of the investigated system. In practice, there
is a plethora of DFT methods which depends on the discretization used to pa-
rameterize the KS equations. The discretization in the Full-potential Linearized
Augmented Plane Wave (FLAPW) method [10,4] is based on plane wave expan-
sion of ψk,ν(r), where the momentum vector k and the band index ν replace the

generic index i. The k-point wave function ψk,ν(r) =
∑

|G+k|≤Kmax
cG
k,νϕG(k, r)

is expanded in terms of a basis set ϕG(k, r) indexed by the vectors G lying in
the lattice reciprocal to configuration space up to a chosen cut-off value Kmax.
In FLAPW, the physical (configuration) space of the simulation cell is divided
into spherical regions, called Muffin-Tin (MT) spheres, centered around atomic
nuclei, and interstitial areas between the MT spheres. The basis set ϕG(k, r)
takes a different expression depending on the region

ϕG(k, r) ∝

ei(k+G)r Interstitial
∑

l,m

[

A
a,G
l,m (k)ual (r) +B

a,G
l,m (k)u̇al (r)

]

Yl,m(r̂a) ath Muffin Tin (2)

where the coefficients Aa,G
l,m (k) and Ba,G

l,m (k) are determined by imposing conti-
nuity of ϕG(k, r) and its derivative at the boundary of the MTs. Due to this
expansion the KS equations naturally translate to a set of generalized eigenvalue
problems

∑

G′ [HG,G′(k) − λkνSG,G′(k)] cG
′

k,ν = 0 for the coefficients of the ex-

pansion cG
′

k,ν where the Hamiltonian and Overlap matrices H and S are given by
multiple integrals and sums

{H(k), S(k)}G,G′ =
∑

a

∫∫

ϕ∗
G(k, r){Ĥ, I}ϕG′(k, r)dr. (3)

Since the set of basis functions in Eq. (2) is implicitly labeled by the values
the variable k takes in the Brillouin zone, there are multiple Hamiltonian and
Overlap matrices, one for each independent k-point.

Without loss of generality, we can abstract from the k-point index and re-
cover an explicit formulation of the HG,G′ and SG,G′ matrices by substituting
Eq. (2) in Eq. (3) and carrying out the multiple integration. The computation
is particularly complex within the MT regions where the initialization of the
Hamiltonian and Overlap matrices is by far the most computationally intensive
task. By exploiting the properties of the basis functions, the H and S matrices
are directly expressed as functions of the set of A and B coefficients.

(S)
G′,G =

NA∑

a=1

∑

l,m

(

A
a,G′

l,m

)∗

A
a,G
l,m +

(

B
a,G′

l,m

)∗

B
a,G
l,m ‖u̇a

l
‖2 (4)

(H)G′,G =

NA∑

a=1

∑

L′,L

((

A
a,G′

L′

)∗

T
[AA]
L′,L;aA

a,G
L

)

+
((

A
a,G′

L′

)∗

T
[AB]
L′,L;aB

a,G
L

)

+
((

B
a,G′

L′

)∗

T
[BA]
L′,L;aA

a,G
L

)

+
((

B
a,G′

L′

)∗

T
[BB]
L′,L;aB

a,G
L

)

. (5)

Notice that in Eq. (5) for convenience we have compacted the indexes l ,m into
L, and expressed the range of the index a over all the distinct atom types NA.

The new matrices T
[...]
L′,L;a ∈ CNL×NL are dense and their computation involves

multiple integrals between the basis functions and the non-spherical part of the
potential V0 (See [2, Appendix A.2] for details). Due to the non-orthornormality
of the basis function set (2), the matrix S is non-diagonal, dense, and generically
positive definite with the exception of having few very small singular values. On
the opposite H is always non-definite and both matrices are either complex
Hermitian or real symmetric.

2 Algorithm

As a first step towards using the BLAS and LAPACK libraries, all the involved
objects in Eqs. (4) and (5) are expressed in matrix form, dropping indexes L, L′,
G, and G′. Assuming the coefficient objects A and B as well as the T matrices
as input, matrices H and S can be computed as follows:

H =

NA∑

a=1

AH
a T

[AA]Aa
︸ ︷︷ ︸

HAA

+AH
a T

[AB]Ba +BH
a T

[BA]Aa +BH
a T

[BB]Ba
︸ ︷︷ ︸

HAB+BA+BB

(6)

S =

NA∑

a=1

AH
a Aa +BH

a U
H
a UaBa, (7)

where Aa and Ba ∈ CNL×NG , T
[...]
a ∈ CNL×NL , H and S ∈ CNG×NG , and

U ∈ CNL×NL is a diagonal matrix. Typical for the matrix sizes areNA ∼ O(100),
NG ∼ O(1000) to O(10000), and NL ∼ O(100).

Algorithm 1 illustrates the algorithm used to compute Eqs. (6) and (7) in
HSDLA. Two main insights drive the design of the algorithm. First, it exploits
symmetries to reduce the computational cost; then, it casts the computation in
terms of BLAS and LAPACK kernels. Furthermore, when possible, multiple ma-
trices are stacked together to allow for larger matrix products, which in general
results in higher performance.

The computation of H is split into two parts, HAB+BA+BB and HAA. The
computation of HAB+BA+BB corresponds to lines 4 through 10. The key idea
behind the calculation is to rewrite the expression as

NA∑

a=1

BH
a (T [BA]Aa) + (AH

a T
[AB])Ba +

1

2
BH

a (T [BB]Ba) +
1

2
(BH

a T
[BB])Ba,

noting that T [BA] is the Hermitian transpose of T [AB] and that T [BB] is itself
Hermitian. The operations in parentheses are computed one at a time for each
i. Then, the results are aggregated into single large matrices for a large product.

The computation of HAA corresponds to lines 17 through 29. The algorithm
first attempts a Cholesky factorization of T [AA] (CaCa = T [AA]), which requires
the matrix to be Hermitian positive definite (HPD). While, in theory, T [AA] is
HPD, in practice, due to numerical considerations, the factorization may fail.

Depending on the success or failure of each individual factorization, the results
of operations in lines 21 and 24 are stacked on different temporary operands to
then compute HAA in two steps (lines 28 and 29).

The computation of S (lines 13 through 15) is more straightforward. First,
the product AHA is computed as a single large product. Then B is updated
with the norms stored in U and a second large product BHB completes the
computation.

Algorithm 1 : Computation of the H and S matrices in HSDLA.

1: Create A, B
2: Backup Â = A, B̂ = B

3: // First part of H
4: for a := 1 → NA do

5: Za = T
[BA]
a Aa ⊲ (zgemm: 8N2

LNG Flops)

6: Za = Za + 1
2
T

[BB]
a Ba ⊲ (zhemm: 8N2

LNG Flops)
7: Stack Za to Z

8: Stack Ba to B

9: end for

10: H = ZHB +BHZ ⊲ (zher2k: 8NANLN
2
G Flops)

11: Restore A = Â, B = B̂

12: // S
13: S = AHA ⊲ (zherk: 4NANLN

2
G Flops)

14: B = UB ⊲ (scaling: 2NANLNG Flops)
15: S = S +BHB ⊲ (zherk: 4NANLN

2
G Flops)

16: // Second part of H
17: for a := 1 → NA do

18: try:

19: Ca = Cholesky(T
[AA]
a) ⊲ (zpotrf: 4

3
N3

L Flops)
20: success:

21: Ya = CH
a Aa ⊲ (ztrmm: 4N2

LNG Flops)
22: Stack Ya to YHPD

23: failure:

24: Xa = T
[AA]
a Aa ⊲ (zhemm: 8N2

LNG Flops)
25: Stack Xa to X¬HPD

26: Stack Aa to A¬HPD

27: end for

28: H = H + AH

¬HPDX¬HPD ⊲ (zgemm: 8NA¬HPD
NLN

2
G Flops)

29: H = H + Y H

HPDYHPD ⊲ (zherk: 4NAHPD
NLN

2
G Flops)

3 Software re-engineering and performance portability

In this section we set the focus on the porting of the multi-core implementation of
Alg. 1 to heterogeneous architectures consisting of one multi-core node equipped
with one or more GPUs. We perform a quick analysis of the computation to

determine how to split the computation between CPU and GPU(s) with minimal
modifications to the code, and illustrate how with these minor modifications one
can already benefit considerably from the combined computational power of
CPU and GPUs.

Given the characteristic values for NA, NL, and NG observed in our test
cases, at least 97% of the computation is performed by the operations in lines
10, 13, 15, 28 and 29. Thanks to the aggregation of many small matrix products
into single large ones, all these 5 operations are large enough to be efficiently
computed on the GPUs. Therefore, the first step is to off-load these computations
to the GPU making sure that relatively high efficiency is attained.

All five calls correspond to BLAS kernels; we thus look into available BLAS
implementations for GPUs. There exists a range of GPU libraries that of-
fer BLAS functionality, both academic and commercial, such as cuBLAS [1],
cuBLAS-XT, MAGMA [8], and BLASX [9]. The first two are commercial and
developed by NVIDIA, the other two are academic efforts. From the point of
view of programmability, the most convenient alternatives are cuBLAS-XT and
BLASX, since they require minor or no changes to the calls to BLAS routines
and take also care of the data transfers between CPU and GPU transparently.
While BLASX offers certain advantages from the programmability perspective
and claims higher performance and scalability (see [9]), we encountered some
problems in the integration and opted for using cuBLAS-XT for our initial study.

Since cuBLAS-XT does not abide to the BLAS standard interface, three
wrappers, of about 15 lines of code each, around the calls to zherk, zher2k and
zgemm are required to ensure the code works seamlessly in both CPU-only and
CPU-GPU(s) modes. An example for zgemm follows:

void gpu_zgemm_(char *transa, char *transb, int *m, int *n, int *k,

std::complex<double> *alpha, std::complex<double> *A, int *lda,
std::complex<double> *B, int *ldb,

std::complex<double> *beta, std::complex<double> *C, int *ldc)
{

cublasOperation_t cu_transa = transa[0] == ’N’ ? CUBLAS_OP_N :

transa[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasOperation_t cu_transb = transb[0] == ’N’ ? CUBLAS_OP_N :

transb[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasXtZgemm(handle, cu_transa, cu_transb, *m, *n, *k,

(cuDoubleComplex *)alpha, (cuDoubleComplex *)A, *lda,
(cuDoubleComplex *)B, *ldb,

(cuDoubleComplex *)beta, (cuDoubleComplex *)C, *ldc);

}

In addition, two routines for proper initialization and cleanup of the cuda runtime
and the devices are needed. Finally, for the data transfers between CPU and GPU
to be efficient, memory for the matrices involved must be pinned (page-locked).

With these minor modifications, about 100 lines of extra coding, the program
is ready to off-load most of the computation to multiple GPUs and attain n-fold
speedups. It is important to highlight that this simple extension is only possible
thanks to the initial effort in rewriting the initial FLEUR code in terms of matrix
(BLAS/LAPACK) operations. At that point the efficiency and scalability of
the code may be easily ported to more complex architectures. Had the original

FLEUR code not undergone the reengineering process, the coding of efficient low
level routines for the GPUs would be a much more complex and time-consuming
effort.

4 Experimental Results

We turn now our attention to experimental results. We compare the performance
of our hybrid CPU-GPU implementation of Alg. 1 with the performance of
the multi-core (CPU only) HSDLA. As test cases we use two input systems
describing two distinct physical systems, to which we refer as NaCl and AuAg,
respectively. By including both an insulator and a conductor, these systems
represent a heterogeneous sample with different physical properties. The tests
generate the matrices H and S for one single k-point, and different Kmax values.
The actual problem sizes, that is, the values for NA, NL, and NG in each case
are given in Tab. 1.

Test case NA NL NG : Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

NaCl 512 49 2256 3893 6217 9273
AuAg 108 121 3275 5638 8970 13379

Table 1: Problem sizes for NaCl and AuAg and for a variety of Kmax values.
The value of NG varies with Kmax.

We ran our experiments in two different compute nodes, which we will refer
to as RWTH and JURECA. The RWTH node consists of two eight-core Sandy
Bridge E5-2650 processors, running at a nominal frequency of 2.0 GHz, and 2
NVIDIA Tesla K20Xm GPUs. The node is equipped with 64 GBs of RAM. The
combined peak performance for the 16 CPU cores in double precision is of 256
GFlops, while the peak performance for double precision of each GPU is of 1.3
TFlops, for a total of 2.6 TFlops. The JURECA node consists of two twelve-core
Haswell E5-2680v3 processors, running at a nominal frequency of 2.5 GHz, and
2 NVIDIA K80 GPUs (each of which consists of two K40 GPU devices). The
node is equipped with 128 GBs of RAM. The combined peak performance for the
24 CPU cores in double precision is of 960 GFlops, while the peak performance
for double precision of each GPU device is of about 1.45 TFlops, for a total of
5.8 TFlops. In all cases, the code was linked to Intel MKL version 11.3.2 for the
BLAS and LAPACK routines on the CPU; the GPU code was linked to NVIDIA
cuBLAS-XT version 7.5.

RWTH. Table 2 collects the timings for the NaCl test case for the three sce-
narios of interest (CPU only, CPU + 1 GPU, CPU + 2 GPUs). The speedup
with respect to HSDLA is given in parentheses. As expected, the considerable

gap in performance between CPU and GPU is reflected in the observed large
speedups: up to 2.76× and 4.04× for 1 and 2 GPUs, respectively.

Similar results are presented in Tab. 3 for the AuAg test case, but in this case
the observed speedups are even larger. The reason for this is that, while MKL is
already close to its peak performance for the matrix sizes of NaCl, cuBLAS-XT
still has room for improvement and benefits from the larger matrices in AuAg.
In fact, one can expect still better speedups for larger systems.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 18.27s 39.84s 91.52s 189.53s
CPU + 1 GPU 8.03s (2.28×) 15.87s (2.51×) 35.64s (2.57×) 68.59s (2.76×)
CPU + 2 GPUs 6.51s (2.81×) 12.37s (3.22×) 24.39s (3.75×) 46.97s (4.04×)

Table 2: Timings and speedup (in parentheses) for the NaCl test case for varying
Kmax. Results for the RWTH node.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 15.64s 46.23s 104.25s 215.98s
CPU + 1 GPU 7.52s (2.08×) 16.16s (2.86×) 35.62s (2.93×) 71.35s (3.03×)
CPU + 2 GPUs 5.62s (2.78×) 11.28s (4.10×) 23.10s (4.51×) 43.54s (4.96×)

Table 3: Timings and speedup (in parentheses) for the AuAg test case for varying
Kmax. Results for the RWTH node.

JURECA. Results for the JURECA node are presented in Tabs. 4 and 5 for
NaCl and AuAg, respectively. In this case we show timings and speedups for up
to 4 GPUs. The maximum observed speedups are 1.77×, 2.76× and 4.26× for
1, 2 and 4 GPUs, respectively. Given that the increase in computational power
in each case is of 2.4×, 3.9× and 6.8×, respectively, these numbers are quite
satisfactory.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 9.334s 23.293s 41.500s 74.731s
CPU + 1 GPU 6.474s (1.44×) 14.502s (1.61×) 32.728s (1.27×) 66.546s (1.12×)
CPU + 2 GPUs 4.995s (1.87×) 10.381s (2.24×) 21.842s (1.90×) 42.581s (1.76×)
CPU + 4 GPUs 4.720s (1.98×) 8.760s (2.66×) 15.449s (2.69×) 26.575s (2.81×)

Table 4: Timings and speedup (in parentheses) for the NaCl test case for varying
Kmax. Results for the JURECA node.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 9.102s 22.681s 57.314s 100.190s
CPU + 1 GPU 6.136s (1.48×) 14.466s (1.57×) 32.338s (1.77×) 68.910s (1.45×)
CPU + 2 GPUs 4.376s (2.08×) 9.699s (2.34×) 20.800s (2.76×) 42.242s (2.37×)
CPU + 4 GPUs 3.533s (2.58×) 6.690s (3.39×) 13.457s (4.26×) 25.359s (3.95×)

Table 5: Timings and speedup (in parentheses) for the AuAg test case for varying
Kmax. Results for the JURECA node.

4.1 Fine-tuning for performance and scalability

The observed speedups are substantial. Yet, one could expect even better results,
especially in the case of the RWTH node where the computational power of the
two GPUs combined is ten times larger than that of the CPUs. This potential
for improvement comes as no surprise, since this is only a basic port to illustrate
how far one can get with minimal code modifications; to attain close-to-optimal
performance further work is required. For ideal results, a hybrid and highly-
tuned BLAS as well as a GPU-accelerated version of the computation in the
loops are needed.

In order to have a more tangible discussion, we provide in Tab. 6 a breakdown
of the timings for the NaCl (Kmax = 4.0) test case running in the RWTH node
with two K20x GPUs. The bottom rows correspond to the large BLAS operations
off-loaded to the two GPUs; the top rows correspond to the rest of the code
(both loops and the application of the U norm) executed on the CPU only. The
efficiency is measured with respect to the combined performance of CPU plus
GPUs.

Section (line(s)) Time Performance Efficiency

Loop 1 (4–9) 2.27 secs 80.35 GFlops/s 0.03
Loop 2 (17–27) 2.62 secs 34.81 GFlops/s 0.01
U norm (14) 0.23 secs 1.01 GFlops/s 0.00

S1 (13) 4.37 secs 1974.63 GFlops/s 0.69
S2 (15) 4.41 secs 1956.72 GFlops/s 0.68
H1 (10) 9.49 secs 1818.57 GFlops/s 0.63
H2 (28) 2.32 secs 1859.72 GFlops/s 0.65
H3 (29) 4.75 secs 1816.66 GFlops/s 0.63

Table 6: Breakdown of timings for NaCl (Kmax = 4.0) together with the respec-
tive attained performance and efficiency.

Three main messages can be extracted from Tab. 6:

1. NVIDIA’s cuBLAS-XT does a good job attaining an efficiency between 63%
and 69%.

2. Yet, these operations may attain about 90% of the peak if the matrices are
large enough and the code is highly optimized and hybrid. This would mean
attaining around 2.5 TFlops/s, that is, an extra 25% speedup for these heavy
computations.

3. When the target architecture offers massive parallelism, minor portions of
code that do not scale may become a bottleneck. In our case, the 3% of the
computation that was not off-loaded to the GPUs becomes non-negligible.
In fact, the weight of these operations in our experiments may account for
up to 35% of the time to solution, and compromise the overall scalability.
Due to the size of the matrices involved in these operations (between 50×50
and 100 × 100 for the T matrices in our test cases), these products do not
scale well, especially on GPUs. Specialized code is required to mitigate their
impact in the overall time to solution.

5 Conclusions and Future Work

We concentrated on the benefits of rewriting scientific code in terms of standard-
ized libraries for portable performance and scalability. As use case we considered
a portion of the FLEUR code base, a software for electronic structure calcula-
tions.

We demonstrated that major efforts in re-engineering part of the original
FLEUR code, and writing it in terms of the BLAS and LAPACK libraries, en-
ables a fast porting that exploits the vast computational power of emerging
heterogeneous architectures such as multi-core CPUs combined with multiple
GPUs. Most importantly, the porting only required less than 100 new lines of
code. The resulting implementation attains speedups of up to 3× and 5× for
simulations run on a system equipped with two K20x GPUs, respectively, and
speedups of up to 1.8×, 2.8× and 4.3× for runs with 1, 2 and 4 GPUs, respec-
tively, on a system equipped with two K80 GPUs (each consisting of two K40
GPUs).

While satisfactory, these results highlight room for improvement. In the fu-
ture, we aim at developing more efficient hybrid CPU-GPU routines for the
major matrix products in the code as well as attaining sufficient scalability of
the rest of the code to ensure a uniform overall scalability.

6 Acknowledgements

This work was partially funded by the Ministry of Science and Education
of the Republic of Croatia and the Deutsche Akademische Austauschdienst
(DAAD) from funds of the Bundesministeriums für Bildung und Forschung
(BMBF) through project “PPP Kroatien” ID 57216700. Financial support from
the Jülich Aachen Research Alliance-High Performance Computing and the

Deutsche Forschungsgemeinschaft (DFG) through grant GSC 111 is also grate-
fully acknowledged. Furthermore, the authors thank the RWTH IT Center and
the Jülich Supercomputing Centre for the computational resources.

References

1. cuBLAS: The NVIDIA CUDA Basic Linear Algebra Subroutines,
https://developer.nvidia.com/cublas

2. Di Napoli, E., Peise, E., Hrywniak, M., Bientinesi, P.: High-performance generation
of the Hamiltonian and Overlap matrices in FLAPW methods. Computer Physics
Communications (Oct 2016), DOI: 10.1016/j.cpc.2016.10.003

3. FLEUR: The Jülich FLAPW code family (Oct 2016),
http://www.flapw.de/pm/index.php

4. Jansen, H.J.F., Freeman, A.J.: Total-Energy Full-Potential Linearized Augmented-
Plane-Wave Method for Bulk Solids - Electronic and Structural-Properties of Tung-
sten. Physical Review B 30(2), 561–569 (Jul 1984)

5. Kohn, W., Sham, L.J.: Self-Consistent Equations Including Exchange and Corre-
lation Effects. Phys.Rev. 140, A1133–A1138 (1965)

6. Nogueira, F., Marques, M.A.L., Fiolhais, C.: A primer in density functional theory.
Lecture Notes in Physics, Springer, Berlin (2003)

7. Sholl, D., Steckel, J.A.: Density Functional Theory. A Practical Introduction, John
Wiley & Sons (Sep 2011)

8. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra
solvers for multicore with GPU accelerators. In: Proc. of the IEEE
IPDPS’10. pp. 1–8. IEEE Computer Society, Atlanta, GA (April 19-23 2010),
DOI: 10.1109/IPDPSW.2010.5470941

9. Wang, L., Wu, W., Xu, Z., Xiao, J., Yang, Y.: BLASX: A High Performance Level-
3 BLAS Library for Heterogeneous Multi-GPU Computing. In: Proceedings of the
2016 International Conference on Supercomputing. pp. 20:1–20:11. ICS ’16, ACM,
New York, NY, USA (2016)

10. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-Potential
Self-Consistent Linearized-Augmented-Plane-Wave Method for Calculating the
Electronic-Structure of Molecules and Surfaces - O2 Molecule. Physical Review
B 24(2), 864–875 (Jul 1981)

https://developer.nvidia.com/cublas
http://www.flapw.de/pm/index.php

	Hybrid CPU-GPU generation of the Hamiltonian and Overlap matrices in FLAPW methods

