Skip to main content

The Direct-Hybrid Method for Computational Aeroacoustics on HPC Systems

  • Conference paper
  • First Online:
Book cover High-Performance Scientific Computing (JHPCS 2016)

Abstract

Classic hybrid methods for computational aeroacoustics use different solvers and methods to predict the flow field and the acoustic pressure field in two separate steps, which involves data exchange via disk I/O between the solvers. This limits the efficiency of the approach, as parallel I/O usually does not scale well to large numbers of cores. In this work, a highly scalable direct-hybrid scheme is presented, in which both the flow and the acoustics simulations run simultaneously. That is, all data between the two solvers is transferred in-memory, avoiding the restrictions of the I/O subsystem. Results for the simulation of a pair of co-rotating vortices show that the method is able to correctly predict the acoustic pressure field and that it is suitable for highly parallel simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ZFS/_node.html.

References

  1. Bogey, C., Bailly, C., Juvé, D.: Computation of flow noise using source terms in linearized Euler’s equations. AIAA J. 40(2), 235–243 (2002)

    Article  Google Scholar 

  2. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)

    Article  Google Scholar 

  3. Bungartz, H.J., Benk, J., Gatzhammer, B., Mehl, M., Neckel, T.: Partitioned simulation of fluid-structure interaction on cartesian grids. In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II. LNCSE, vol. 73, pp. 255–284. Springer Science + Business Media, Heidelberg (2010). doi:10.1007/978-3-642-14206-2_10

    Chapter  Google Scholar 

  4. Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Report TM 109112, NASA Langley Research Center (1994)

    Google Scholar 

  5. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188, 365–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fechter, S., Munz, C.D.: A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow. Int. J. Numer. Meth. Fluids 78(7), 413–435 (2015)

    Article  MathSciNet  Google Scholar 

  7. Flad, D., Frank, H., Beck, A.D., Munz, C.D.: A discontinuous galerkin spectral element method for the direct numerical simulation of aeroacoustics. In: AIAA Paper 2014–2740 (2014)

    Google Scholar 

  8. Gatzhammer, B., Mehl, M., Neckel, T.: A coupling environment for partitioned multiphysics simulations applied to fluid-structure interaction scenarios. Procedia Comput. Sci. 1(1), 681–689 (2010)

    Article  Google Scholar 

  9. Geiser, G., Schlimpert, S., Schröder, W.: Thermoacoustical noise induced by laminar flame annihilation at varying flame thicknesses. In: AIAA Paper 2012–2093 (2012)

    Google Scholar 

  10. Gröschel, E., Schröder, W., Renze, P., Meinke, M., Comte, P.: Noise prediction for a turbulent jet using different hybrid methods. Comput. Fluids 37(4), 414–426 (2008)

    Article  MATH  Google Scholar 

  11. Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Comput. Fluids 102, 182–202 (2014)

    Article  Google Scholar 

  12. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartmann, D., Meinke, M., Schröder, W.: Differential equation based constrained reinitialization for level set methods. J. Comput. Phys. 227(14), 6821–6845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Meth. Appl. Mech. Eng. 200, 1038–1052 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

    Article  MathSciNet  Google Scholar 

  16. Jaure, S., Duchaine, F., Staffelbach, G., Gicquel, L.Y.M.: Massively parallel conjugate heat transfer methods relying on large eddy simulation applied to an aeronautical combustor. Comput. Sci. Discov. 6(1) (2013)

    Google Scholar 

  17. Joppich, W., Kürschner, M.: MpCCI - a tool for the simulation of coupled applications. Concurr. Comput. 18(2), 183–192 (2005)

    Article  Google Scholar 

  18. Koh, S.R., Schröder, W., Meinke, M.: Turbulence and heat excited noise sources in single and coaxial jets. J. Sound Vibr. 329, 786–803 (2010)

    Article  Google Scholar 

  19. Kopriva, D.A.: A conservative staggered-grid chebyshev multidomain method for compressible flows. II. A semi-structured method. J. Comput. Phys. 128(2), 475–488 (1996)

    Article  MATH  Google Scholar 

  20. Kopriva, D.A., Woodruff, S.L., Hussaini, M.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Meth. Eng. 53, 105–222 (2002)

    Article  MATH  Google Scholar 

  21. Kopriva, D., Woodruff, S., Hussaini, M.: Discontinuous spectral element approximation of Maxwell’s Equations. In: Cockburn, B., Kariadakis, G., Shu, C.W. (eds.) Proceedings of the International Symposium on Discontinuous Galerkin Methods. LNCSE, vol. 11, pp. 355–361. Springer, Heidelberg (2000). doi:10.1007/978-3-642-59721-3_33

    Chapter  Google Scholar 

  22. Kornhaas, M., Schäfer, M., Sternel, D.C.: Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures. Comput. Mech. 55(6), 1143–1154 (2015)

    Article  MATH  Google Scholar 

  23. Kornhaas, M., Sternel, D.C., Schäfer, M.: Efficiency investigation of a parallel hierarchical grid based aeroacoustic code for low Mach numbers and complex geometries. In: Pereira, J.C.F., Sequeira, A. (eds.) V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010. Lisbon, Portugal (2010)

    Google Scholar 

  24. Krause, D., Thörnig, P.: JURECA: general-purpose supercomputer at Jülich supercomputing centre. J. Large Scale Res. Facil. 2 (2016). Article No: A62

    Google Scholar 

  25. Lee, D.J., Koo, S.O.: Numerical study of sound generation due to a spinning vortex pair. AIAA J. 33(1), 20–26 (1995)

    Article  MATH  Google Scholar 

  26. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  27. Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on HPC systems. Comput. Meth. Appl. Mech. Eng. 277, 131–153 (2014)

    Article  MathSciNet  Google Scholar 

  28. Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulations. Comput. Fluids 31, 695–718 (2002)

    Article  MATH  Google Scholar 

  30. Pausch, K., Schlimpert, S., Koh, S.R., Grimmen, J.H., Schröder, W.: The effect of flame thickening on the acoustic emission in turbulent combustion. In: AIAA Paper 2016–2745 (2016)

    Google Scholar 

  31. Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids 27(7), 075–106 (2015)

    Article  Google Scholar 

  32. Powell, A.: Theory of vortex sound. J. Acoust. Soc. Am. 36(1), 177 (1964)

    Article  MathSciNet  Google Scholar 

  33. Sagan, H.: Space-Filling Curves, 1st edn. Universitext - Springer, New York (1994)

    Book  MATH  Google Scholar 

  34. Schlottke, M., Cheng, H.J., Lintermann, A., Meinke, M., Schröder, W.: A direct-hybrid method for computational aeroacoustics. In: AIAA Paper 2015–3133 (2015)

    Google Scholar 

  35. Schlottke-Lakemper, M., Klemp, F., Cheng, H.-J., Lintermann, A., Meinke, M., Schröder, W.: CFD/CAA simulations on HPC systems. In: Resch, M.M., Bez, W., Focht, E., Patel, N., Kobayashi, H. (eds.) Sustained Simulation Performance 2016, pp. 139–157. Springer, Cham (2016). doi:10.1007/978-3-319-46735-1_12

    Chapter  Google Scholar 

  36. Schlüter, J., Wu, X., van der Weide, E., Hahn, S., Alonso, J., Pitsch, H.: Multi-code simulations: a generalized coupling approach. In: AIAA Paper 2005–4997 (2005)

    Google Scholar 

  37. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

    Article  MathSciNet  Google Scholar 

  38. Scully, M.: Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. Technical report ARSL TR 178–1, Massachusetts Institute of Technology, Cambridge, MA (1975)

    Google Scholar 

  39. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre. J. Large Scale Res. Facil. 1 (2015). Article No: A1

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ansgar Niemöller and Vitali Pauz for their helpful contributions. Furthermore, the authors gratefully acknowledge the allocation of supercomputing time as well as the technical support by the High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart, Germany. They also gratefully acknowledge the computing time granted on the supercomputer JURECA [24] and the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large-Scale Project on the GCS share of the supercomputer JUQUEEN [39] at the Jülich Supercomputing Centre (JSC) of the Forschungszentrum Jülich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlottke-Lakemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schlottke-Lakemper, M., Yu, H., Berger, S., Lintermann, A., Meinke, M., Schröder, W. (2017). The Direct-Hybrid Method for Computational Aeroacoustics on HPC Systems. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics