
ar
X

iv
:1

60
8.

00
19

6v
1

 [
cs

.D
S]

 3
1

Ju
l 2

01
6

An Approximation Algorithm for Maximum Internal Spanning Tree

Zhi-Zhong Chen∗ Youta Harada† Lusheng Wang‡

Abstract

Given a graph G, the maximum internal spanning tree problem (MIST for short) asks for
computing a spanning tree T of G such that the number of internal vertices in T is maxi-
mized. MIST has possible applications in the design of cost-efficient communication networks
and water supply networks and hence has been extensively studied in the literature. MIST is
NP-hard and hence a number of polynomial-time approximation algorithms have been designed
for MIST in the literature. The previously best polynomial-time approximation algorithm for
MIST achieves a ratio of 3

4
. In this paper, we first design a simpler algorithm that achieves the

same ratio and the same time complexity as the previous best. We then refine the algorithm
into a new approximation algorithm that achieves a better ratio (namely, 13

17
) with the same

time complexity. Our new algorithm explores much deeper structure of the problem than the
previous best. The discovered structure may be used to design even better approximation or
parameterized algorithms for the problem in the future.

Keywords: Approximation algorithms, spanning trees, path-cycle covers.

1 Introduction

The maximum internal spanning tree problem (MIST for short) requires the computation of a
spanning tree T in a given graph G such that the number of internal vertices in T is maximized.
MIST has possible applications in the design of cost-efficient communication networks [17] and
water supply networks [1]. Unfortunately, MIST is clearly NP-hard because the problem of finding
a Hamiltonian path in a given graph is NP-hard [5] and can be easily reduced to MIST. MIST is
in fact APX-hard [9] and hence does not admit a polynomial-time approximation scheme.

Since MIST is APX-hard, it is of interest to design polynomial-time approximation algorithms
for it that achieve a constant ratio as close to 1 as possible. Indeed, Prieto and Sliper [12] presented
a polynomial-time approximation algorithm for MIST achieving a ratio of 1

2 . Their algorithm is
based on local search. By slightly modifying Prieto and Sliper’s algorithm, Salamon and Wiener [17]
then obtained a faster (linear-time) approximation algorithm achieving the same ratio. Salamon
and Wiener [17] also considered two special cases of MISP. More specifically, they [17] designed
a polynomial-time approximation algorithm for the special case of MIST restricted to claw-free
graphs that achieves a ratio of 2

3 , and also designed a polynomial-time approximation algorithm for
the special case of MIST restricted to cubic graphs that achieves a ratio of 5

6 . Salamon [15] later
proved that the approximation algorithm in [17] indeed achieves a performance ratio of 3

r+1 for
the special case of MIST restricted to r-regular graphs. Based on local optimization, Salamon [16]

∗Corresponding author. Division of Information System Design, Tokyo Denki University, Hatoyama, Saitama

350-0394, Japan. Email: zzchen@mail.dendai.ac.jp
†Division of Information System Design, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
‡Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.

Email: cswangl@cityu.edu.hk

1

http://arxiv.org/abs/1608.00196v1

further came up with an O(n4)-time approximation algorithm for the special of MIST restricted to
graphs without leaves that achieves a ratio of 4

7 . The algorithm in [16] was subsequently simplified
and re-analyzed by Knauer and Spoerhase [7] so that it runs faster (in cubic time) and achieves a
better ratio (namely, 3

5) for (the general) MIST. Li et al. [8] even went further by showing that a
deeper local search than those in [7] and [16] can achieve a ratio of 2

3 for MIST. Recently, Li and
Zhu [9] came up with a polynomial-time approximation algorithm for MIST that achieves a ratio
of 3

4 . Unlike the other previously known approximation algorithms for MIST, the algorithm in [9]
is based on a simple but crucial observation that the maximum number of internal vertices in a
spanning tree of a graph G can be bounded from above by the maximum number of edges in a
triangle-free path-cycle cover of G.

In the weighted version of MIST (WMIST for short), each vertex of the given graph G has
a nonnegative weight and the objective is to find a spanning tree T of G such that the total
weight of internal vertices in T is maximized. Salamon [16] designed an O(n4)-time approximation
for WMIST that achieves a ratio of 1

2∆−3 , where ∆ is the maximum degree of a vertex in the
input graph. Salamon [16] also considered the special case of WMIST restricted to claw-free
graphs without leaves, and designed an O(n4)-time approximation algorithm for the special case
that achieves a ratio of 1

2 . Subsequently, Knauer and Spoerhase [7] proposed a polynomial-time
approximation algorithm for (the general) WMIST that achieves a ratio of 1

3 − ǫ for any constant
ǫ > 0.

In the parameterized version of MIST (PMIST for short), we are asked to decide whether a
given graph G has a spanning tree with at least a given number k of internal vertices. PMIST and
its special cases and variants have also been extensively studied in the literature [1, 2, 3, 4, 10,
11, 12, 13, 14]. The best known kernel for PMIST is of size 2k and it leads to the fastest known
algorithm for PMIST with running time O(4knO(1)) [11].

In this paper, we first give a new approximation algorithm for MIST that is simpler than the
one in [9] but achieves the same approximation ratio and time complexity. In more details, the
time complexity is dominated by that of computing a maximum triangle-free path-cycle cover in a
graph. We then show that the algorithm can be refined into a new approximation algorithm for
MIST that has the same time complexity as the algorithm in [9] but achieves a better ratio (namely,
13
17). To obtain our algorithm, we use three new main ideas. The first main idea is to bound the
maximum number of internal vertices in a spanning tree of a graph G by the maximum number
of edges in a special (rather than general) triangle-free path-cycle cover of G. Roughly speaking,
we can figure out that certain vertices in G must be leaves in an optimal spanning tree of G, and
hence we can require that the degrees of these vertices be at most 1 when computing a maximum
triangle-free path-cycle cover C of G. In this sense, C is special and can have significantly fewer
edges than a maximum (general) triangle-free path-cycle cover of G, and hence gives us a tighter
upper bound. The second idea is to carefully modify C into a spanning tree T by local improvement.
Unfortunately, we can not always guarantee that the number of internal vertices in T is at least 13

17
times the number of edges in C. Our third idea is to show that if this unfortunate case occurs, then
an optimal spanning tree of G cannot have so many internal vertices. These ideas may be used to
design even better approximation or parameterized algorithms for MIST in the future.

The remainder of this paper is organized as follows. Section 2 gives basic definitions that will
be used in the remainder of the paper. Section 3 presents a simple approximation algorithm for
MIST that achieves a ratio of 3

4 . The subsequent sections are devoted to refining the algorithm so
that it achieves a better ratio.

2

2 Basic Definitions

Throughout this chapter, a graph means a simple undirected graph (i.e., it has neither parallel
edges nor self-loops).

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G by
E(G). For a subset U of V (G), G−U denotes the graph obtained from G by removing the vertices
in U (together with the edges incident to them), while G[U] denotes G− (V (G) \U). We call G[U]
the subgraph of G induced by U . For a subset F of E(G), G− F denotes the graph obtained from
G by removing the edges in F . An edge e of G is a bridge of G if G − {e} has more connected
components than G, and is a non-bridge otherwise. A vertex v of G is a cut-point if G − {v} has
more connected components than G.

Let v be a vertex of G. The neighborhood of v in G, denoted by NG(v), is {u | {v, u} ∈ E(G)}.
The degree of v in G, denoted by dG(v), is |NG(v)|. If dG(v) = 0, then v is an isolated vertex of G.
If dG(v) ≤ 1, then v is a leaf of G; otherwise, v is a non-leaf of G. We use L(G) to denote the set
of leaves in G.

Let H be a subgraph of G. NG(H) denotes
⋃

v∈V (H) NG(v) \ V (H). A port of H is a u ∈ V (H)
with NG(u)\V (H) 6= ∅. When H is a path, H is dead if neither endpoint of H is a port of H, while
H is alive otherwise. H and another subgraph H ′ of G are adjacent in G if V (H)∩ V (H ′) = ∅ but
NG(H) ∩ V (H ′) 6= ∅ (or equivalently, NG(H

′) ∩ V (H) 6= ∅).
A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A path in G

is either a single vertex of G or a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. A vertex v of a path P in G is an endpoint of P if dP (v) ≤ 1,
and is an internal vertex of P if dP (v) = 2. The length of a cycle or path C is the number of edges
in C and is denoted by |C|. A k-cycle is a cycle of length k, while a k-path is a path of length k. A
tree (respectively, cycle) component of G is a connected component of G that is a tree (respectively,
cycle). In particular, if a tree component T of G is indeed a path (respectively, k-path), then we
call T a path (respectively, k-path) component of G.

A tree-cycle cover (TCC for short) of G is a subgraph H of G such that V (H) = V (G) and
each connected component of H is a tree or cycle. Let H be a TCC of G. H is a Hamiltonian path

(respectively, cycle) of G if H is a path (respectively, cycle), and is a spanning tree of G if H is a
tree. H is a path-cycle cover (PCC for short) of G if each tree component of H is a path. H is a
path cover of G if H has only path components. A triangle-free TCC (TFTCC for short) of G is a
TCC without 3-cycles. Similarly, a triangle-free PCC (TFPCC for short) of G is a PCC without
3-cycles. A TFPCC of G is maximum if its number of edges is maximized over all TFPCCs of G.
For convenience, let t(n,m) denote the time complexity of computing a maximum TFPCC in a
graph with n vertices and m edges. It is known that t(n,m) = O(n2m2) [6].

Suppose that G is connected. The weight of a spanning tree T of G, denoted by w(T), is the
number of non-leaves in T . We use opt(G) to denote the maximum weight of a spanning tree of G.
An optimal spanning tree (OST for short) of G is a spanning tree T of G with w(T) = opt(G).

3 A Simple 0.75-Approximation Algorithm

Throughout the remainder of this paper, G means a connected graph for which we want to find an
OST. Moreover, T denotes an OST of G. For convenience, let n = |V (G)| and m = |E(G)|.

3

3.1 Reduction Rules

We want to make G smaller (say, by deleting one or more vertices or edges from G) without
decreasing opt(G). For this purpose, we define two strongly safe operations on G below. Here, an
operation on G is strongly safe if performing it on G does not change opt(G).

Operation 1. If |V (G)| > 3 and E(G) contains two edges {u1, v} and {u2, v} such that both u1
and u2 are leaves of G, then delete u2.

Operation 2. If for a non-bridge e = {u1, u2} of G, G−{ui} has a connected component Ki with
u3−i 6∈ V (Ki) for each i ∈ {1, 2}, then delete e. (Comment: When |V (K1)| = |V (K2)| = 1,
Li and Zhu [9] showed that Operation 2 is strongly safe.)

K3

K4
u

v

2u1

Operation 1

u2u1

Operation 2

K2

u2u1

Operation 3

K1

K2

v

Operation 4

K v u
K1

e

e
G G1

Figure 1: Operations 1 through 4, where the wavy curve is a path and each dotted edge and the
vertex enclosed by a dotted circle will be deleted.

Lemma 3.1 [9] Operation 1 is strongly safe.

Lemma 3.2 Operation 2 is strongly safe.

Proof. If e 6∈ E(T), we are done. So, assume that e ∈ E(T). Obviously, at least one vertex v1
of K1 is adjacent to u1 in T because T is connected. So, {u2, v1} ⊆ NT (u1). Similarly, {u1, v2} ⊆
NT (u2) for some vertex v2 of K2. Moreover, since e is a non-bridge of G, G − {u1, u2} has a
connected component K3 (other than K1 and K2) with {u1, u2} ⊆ NG(K3). Since T is connected,
u1 or u2 is adjacent to a vertex v3 of K3 in T . We assume that v3 ∈ NT (u1); the other case is
similar. Then, after deleting e from T , only u2 may become a new leaf. If u2 becomes a leaf in
T − {e}, then all vertices of K3 must belong to the component tree of T − {e} containing u1 and
hence adding an arbitrary edge {u2, v4} of G with v4 ∈ V (K3) to T − {e} yields a new OST of G.
So, we may assume that u2 does not become a leaf in T − {e}. Then, since e is a non-bridge of G,
G must have an edge {x1, x2} such that for each i ∈ {1, 2}, xi belongs to the component tree of
T − {e} containing ui. Now, adding the edge {x1, x2} to T − {e} yields a new OST of G. ✷

An operation on G is weakly safe if performing it on G yields one or more graphsG1, . . . , Gk such
that (1) |V (G)| ≥

∑k
i=1 |V (Gi)|, |E(G)| ≥

∑k
i=1 |E(Gi)|, and |V (G)| + |E(G)| >

∑k
i=1 |V (Gi)| +

∑k
i=1 |E(Gi)|, (2) opt(G) ≤

∑k
i=1 opt(Gi)+c for some nonnegative integer c, and (3) given a spanning

tree Ti for each Gi, a spanning tree T of G with w(T) ≥
∑k

i=1 w(Ti) + c can be computed in linear
time. Note that the last two conditions in the definition imply that opt(G) =

∑k
i=1 opt(Gi) + c.

Operation 3. If G has a bridge e = {u1, u2} such that for each i ∈ {1, 2}, ui is a cut-point in the
connected component Gi of G− e with ui ∈ V (Gi), then obtain G1 and G2 as the connected
components of G− e.

Operation 4. If G has a cut-point v such that one connected component K of G − {v} has at
least two but at most 8 vertices, then obtain G1 from G − V (K) by adding a new vertex u
and a new edge {v, u}.

4

The number 8 in the definition of Operation 4 is not essential. It can be chosen at one’s
discretion as long as it is a constant. We here choose the number 8, because it will be the smallest
number for the proofs of several lemmas in this paper to go through.

Lemma 3.3 Operation 3 is weakly safe.

Proof. First, we want to show that opt(G) ≤ opt(G1)+opt(G2). Consider an i ∈ {1, 2}. Since ui
is a cut-point in Gi, dT (ui) ≥ 3. Thus, the degree of ui in T −{e} is at least 2. So, one component
tree of T −{e} is a spanning tree of G1, the other is a spanning tree of G2, and their total weights
equals w(T). Thus, opt(G) ≤ opt(G1) + opt(G2).

Next, suppose that for each i ∈ {1, 2}, Ti is a spanning tree of Gi. Since ui is a cut-point in Gi,
dTi

(ui) ≥ 2. So, using e to connect T1 and T2 into a single tree yields a spanning tree of G whose
weight is w(T1) + w(T2). ✷

Lemma 3.4 Operation 4 is weakly safe.

Proof. Let K ′ be the graph obtained from G[V (K)∪ {v}] by adding a new vertex u′ and a new
edge {u′, v}. Let c = opt(K ′)− 1.

First, we want to show that opt(G) ≤ opt(G1) + c. Since v is a cut-point of G, dT (v) ≥ 2. Let
T1 be the spanning tree of G1 obtained from T −V (K) by adding u and the edge {v, u}. Further let
T ′ be the spanning tree of K ′ obtained from T [{v} ∪V (K)] by adding u′ and edge {u′, v}. Clearly,
w(T) = w(T1) + w(T ′)− 1 ≤ opt(G1) + c. Thus, opt(G) ≤ opt(G1) + c.

Next, suppose that T1 is a spanning tree of G1. Let T ′ be an OST of K ′. We can obtain a
spanning tree T̃ of G from T1 by first deleting u, next adding T ′[V (K)], and further adding new
edges to connect v to those vertices of V (K) that are adjacent to v in T ′. Obviously, u ∈ L(T1),
u′ ∈ L(T ′), v 6∈ L(T1), v 6∈ L(T ′), the degree of each vertex x of T1 other than v and u in
T̃ is dT1

(x), and the degree of each vertex y of T ′ other than v and u′ in T̃ is dT ′(y). Thus,
w(T̃) = w(T1) + w(T ′)− 1 = w(T1) + c. ✷

An operation on G is safe if it is strongly or weakly safe on G.

3.2 The Algorithm

As in [9], the algorithm is based on a lemma which says that G has a path cover P such that opt(G)
is bounded from above by the number of edges in P. We next state the lemma in a stronger form
and give an extremely simple proof.

Lemma 3.5 Given a spanning tree T̃ of G, we can construct a path cover P of G such that

|E(P)| ≥ w(T̃) and dP(v) ≤ 1 for each leaf v of T̃ .

Proof. We simply construct P from T̃ by first rooting T̃ at an arbitrary non-leaf and then for
each non-leaf u of T̃ , deleting all but one edge between u and its children. ✷

Now, the outline of the algorithm is as follows.

1. Whenever there is an i ∈ {1, 2} such that Operation i can be performed on G, then perform
Operation i on G.

2. Whenever there is an i ∈ {3, 4} such that Operation i can be performed on G, then perform
the following steps:

5

(a) Perform Operation i on G. Let G1, . . . , Gk be the resulting graphs.

(b) For each j ∈ {1, . . . , k}, compute a spanning tree Tj of Gj recursively.

(c) Combine T1, . . . , Tk into a spanning tree T̃ of G such that w(T̃) ≥
∑k

i=1 w(Ti) + c.

(d) Return T̃ .

3. If |V (G)| ≤ 8, then compute and return an OST of G in O(1) time.

4. Compute a maximum TFPCC C of G. (Comment: By Lemma 3.5, opt(G) ≤ |E(C)|).

5. Perform a preprocessing on C without decreasing |E(C)|.

6. Transform C into a spanning tree T̃ of G such that w(T̃) ≥ 3
4 |E(C)|.

7. Return T̃ .

Only Steps 5 and 6 are unclear. So, we detail them below. First, Step 5 is done by performing
the next three operations until none of them is applicable.

Operation 5. If C has a dead path component P such that 2 ≤ |P | ≤ 4 and G[V (P)] has an alive
Hamiltonian path Q, then replace P by Q.

Operation 6. If an endpoint u of a path component P of C is adjacent to a vertex v of a cycle C
of C in G, then combine P and C into a single path by replacing one edge incident to v in C
with the edge {u, v}.

Operation 7. If an endpoint u1 of a path component P1 of C is adjacent to an internal vertex u2
of another path component P2 in G such that one edge e′ incident to u2 in P2 satisfies that
combining P1 and P2 by replacing e′ with the edge {u1, u2} yields two paths Q1 and Q2 with
max{|Q1|, |Q2|} > max{|P1|, |P2|}, then replace P1 and P2 by Q1 and Q2. (Comment: For
each i ∈ {5, 6, 7}, Operation i does not change the maximality of C. So, due to the maximality
of C, no endpoint of a path component P1 of C is adjacent to an endpoint of another path
component P2 in G.)

Figure 2: The possible cases of Operation 5, where each filled circle is a port, each dotted edge will
be deleted, and each bold edge will be added.

Lemma 3.6 Immediately after Step 5, the following statements hold:

1. C is a maximum TFPCC of G and hence has at least opt(G) edges.

2. If a path component P of C is of length at most 3, then P is alive.

6

u

v C

P P1
u1

P2
u2

Operation 6 Operation 7

Figure 3: Operations 6 and 7, where each wavy line or curve is a path, each dotted edge will be
deleted, and each bold edge will be added.

3. If an endpoint v of a path component P of C is a port of P , then each vertex in NG(v)\V (P)
is an internal vertex of a path component Q of C with |Q| ≥ 2|P |+ 2.

Proof. We prove the statements separately as follows.
Statement 1: Immediately before Step 5, C has is a maximum TFPCC of G. Since Operations 5

through 7 keep C being a TFPCC without changing the number of edges in C, Statement 1 holds.
Statement 2: Let P be a path component of C with |P | ≤ 3. If |P | ≤ 1, then P is alive because

otherwise G would be disconnected. So, |P | = 2 or 3. Let u1 and u2 be the endpoints of P . For a
contradiction, assume that P is dead. Then, since G is connected, P has at least one internal vertex
x adjacent to a vertex x′ ∈ V (G)\V (P) in G. If {u1, u2} ∈ E(G), then G[V (P)] has a Hamiltonian
path Q in which x is an endpoint, contradicting the fact that Operation 5 cannot be performed
on C. So, we assume that {u1, u2} 6∈ E(G). Now, if |P | = 2, then Operation 1 can be performed
on G, a contradiction. Thus, we further assume that |P | = 3. Then, since Operation 4 cannot be
performed on G, the other internal vertex y (than x) of P is adjacent to a vertex y′ ∈ V (G) \V (P)
in G. Now, if G[V (P)] is not P itself, then Operation 5 can be performed on C, a contradiction;
otherwise, Operation 2 or 3 can be performed on G, a contradiction. Note that it does not matter
whether x′ = y′ or not.

Statement 3: Suppose that an endpoint v of a path component P of C is a port. Consider
an arbitrary u ∈ NG(v) \ V (P). Since Operation 6 is not applicable on C, u appears in a path
component Q of C. Then, by the comment on Operation 7, u is an internal vertex of Q. Let u1
and u2 be the endpoints of Q. For each i ∈ {1, 2}, let Qi be the path from u to ui in P . Then,
|Q| = |Q1| + |Q2|. Moreover, since Operation 7 cannot be applied on C, |P | + |Qi| + 1 ≤ |Q| for
each i ∈ {1, 2}. Thus, 2|P | + 2 ≤ |Q|. ✷

We next detail Step 6. First, for each path component P of C with 1 ≤ |P | ≤ 3, we select one
edge eP ∈ E(G) connecting an endpoint of P to a vertex not in P , and add eP to an initially empty
set M . Such eP exists by Statement 2 in Lemma 3.6. Moreover, by Statement 3 in Lemma 3.6,
the endpoint of eP not in P appears in a path component Q of C with |Q| ≥ 4. So, for two path
components P1 and P2 in C, eP1

6= eP2
. Consider the graph H obtained from C by adding the edges

in M . Each connected component of H is a cycle of length at least 4 or a tree. Suppose that we
modify H by performing the following three steps in turn:

• Whenever H has two cycles C1 and C2 such that some edge e = {u1, u2} ∈ E(G) satisfies
u1 ∈ V (C1) and u2 ∈ V (C2), delete one edge of C1 incident to u1 from H, delete one edge of
C2 incident to u2 from H, and add e to H.

• Whenever H has a cycle C, choose an edge e = {u, v} ∈ E(G) with u ∈ V (C) and v 6∈ V (C),
delete one edge of C incident to u from H, and add e to H.

• Whenever H has two connected components C1 and C2 such that some edge e = {u1, u2} ∈
E(G) satisfies u1 ∈ V (C1) and u2 ∈ V (C2), add e to H.

7

Step 6 is done by obtaining T̃ as the final modified H. Obviously, for each cycle C of C, at least
|C| − 1 ≥ 3

4 |C| vertices of C are internal vertices of T̃ . Moreover, for each path component P of C

with |P | ≥ 4, at least |P | − 1 ≥ 3
4 |P | vertices of P are internal vertices of T̃ . Furthermore, for each

path component P of C with 1 ≤ |P | ≤ 3, at least |P | vertices of P are internal vertices of T̃ . So,
T̃ has at least 3

4 |E(C)| internal vertices. Obviously, all steps of the algorithm excluding Steps 2b
and 4 can be done in O(|E(G)|2) time. Now, we have the following theorem:

Theorem 3.7 The algorithm achieves an approximation ratio of 3
4 and runs in O(m2) + t(n,m)

time.

In the sequel, we consider how to improve the algorithm. The first idea is to introduce more
safe reduction rules (cf. Section 4). The second idea is to compute a better upper bound on opt(G)
than that given by a maximum TFPCC (cf. Section 5). The third idea is to perform a more
sophisticated preprocessing on C (cf. Section 6). The last idea is to transform C into a spanning
tree of G more carefully (cf. Section 7).

4 More Safe Reduction Rules

In addition to the four safe reduction rules in Section 3.1, we further introduce the following rules.

Operation 8. If for four vertices u1, . . . , u4, NG(u3) = NG(u4) = {u1, u2}, G − {u2} has a
connected component K with u1 6∈ V (K), then delete the edge e = {u2, u3}.

Operation 9. If for five vertices u1, . . . , u5, NG(u3) = NG(u4) = NG(u5) = {u1, u2}, then delete
the edge e = {u2, u3}.

Operation 10. If for two vertices u and v of G, G − {u, v} has a connected component K with
|V (K)| ≤ 6 such that V (G) 6= V (K) ∪ {u, v} and G[V (K) ∪ {u, v}] has a Hamiltonian path
P from u to v, then delete all edges of G[V (K) ∪ {u, v}] that do not appear in P .

Operation 11. If G has an edge e = {u1, u2} with dG(u1) = dG(u2) = 2, then obtain G1 from G
by merging u1 and u2 into a single vertex u1u2.

K

u4

u3

Operation 8 Operation 9 Operation 10 Operation 11

u1 u2

u4

u3

u1 u2

u5
u

P
v

u1

u2

u1u2

G G1

Figure 4: Operations 8 through 11, where the wavy line is a path and each dotted edge will be
deleted.

Lemma 4.1 Operation 8 is strongly safe.

Proof. If e 6∈ E(T), we are done. So, assume that e ∈ E(T). Obviously, at least one vertex v
of K is adjacent to u2 in T because T is connected. So, {u3, v} ⊆ NT (u2). For each i ∈ {2, 3},
let Ti be the component tree of T − {e} in which ui appears. If u4 ∈ V (T3), then u4 is a leaf
of T and hence adding the edge {u2, u4} to T − {e} clearly yields a spanning tree T̃ of G with
|L(T̃)| = |L(T)|. So, we assume u4 ∈ V (T2). If u1 ∈ V (T3), then u4 is a leaf of T and hence adding

8

the edge {u1, u4} to T −{e} clearly yields a spanning tree T̃ of G with |L(T̃)| = |L(T)|. Otherwise,
u3 is a leaf of T and hence adding the edge {u1, u3} to T − {e} clearly yields a spanning tree T̃ of
G with |L(T̃)| = |L(T)|. ✷

Lemma 4.2 Operation 9 is strongly safe.

Proof. If e 6∈ E(T), we are done. So, assume that e ∈ E(T). Obviously, {u4, u5} ∩ L(T) 6= ∅.
Moreover, if for some i ∈ {4, 5}, ui ∈ L(T) and {u2, ui} ∈ E(T), then the proof of Lemma 4.1
shows that T can be transformed into a spanning tree T̃ such that |L(T̃)| ≤ |L(T)| and e 6∈ E(T̃).
Thus, we may assume that u5 ∈ L(T), {u1, u4} ∈ E(T), and {u1, u5} ∈ E(T). Obviously, either
NT (u3) = {u2} or NT (u3) = {u1, u2}. In the latter case, adding the edge {u2, u5} to T −{e} clearly
yields a spanning tree T̃ of G, and |L(T̃)| = |L(T)| holds for u5 ∈ L(T). So, we assume the former
case. Let e′ = {u1, u5}. Then, adding the edges {u1, u3} and {u2, u5} to T − {e, e′} clearly yields
a spanning tree T̃ of G with |L(T̃)| = |L(T)|. ✷

Lemma 4.3 Operation 10 is strongly safe.

Proof. Operation 10 is clearly strongly safe if V (G) = V (K) ∪ {u, v}. So, we assume that
V (G) 6= V (K) ∪ {u, v}. Since K is a connected component, the degree of each vertex x 6∈ V (K) in
T − V (K) is dT (x) unless x ∈ {u, v}. Let u ∼T v be the path between u and v in T .

Let S be the set of internal vertices of u ∼T v. Since K is a connected component of G−{u, v},
either S ∩ V (K) = ∅ or S ⊆ V (K). Obviously, we are done if S = V (K). So, we assume that
S ∩ V (K) is either empty or contains at least one but not all vertices of K. Then, T − {u, v} has
one or more component trees in which at least one vertex of K appears. Let T1, . . . , Tℓ be such
component trees. For each i ∈ {1, . . . , ℓ}, V (Ti) ⊆ V (K) because K is a connected component of
G − {u, v}. Moreover, if V (Ti) 6= S, then L(T) ∩ V (Ti) 6= ∅. Since V (Ti) 6= S for at least one
i ∈ {1, . . . , ℓ}, |L(T) ∩ V (K)| ≥ 1. Furthermore, if S ∩ V (K) = ∅, then |L(T) ∩ V (K)| ≥ ℓ.

Case 1: S is a nonempty proper subset of V (K). Then, modifying T − V (K) by adding the
edges of P yields a new spanning tree T̃ of G. Clearly, L(T̃) \ L(T) ⊆ {u, v}. Moreover, since
V (G) 6= V (K) ∪ {u, v}, it is impossible that {u, v} ⊆ L(T̃). So, |L(T̃) \ L(T)| ≤ 1. Consequently,
|L(T̃)| ≤ |L(T)| because |L(T) ∩ V (K)| ≥ 1.

Case 2: S ∩ V (K) = ∅. Then, both u and v are of degree at least 1 in T − V (K). We assume
that the degree of u in T − V (K) is at least as large as that of v in T − V (K); the other case is
similar. Let y be the neighbor of u in u ∼T v. It is possible that y = v. Obviously, modifying
T − V (K) by adding the edges of P and deleting the edge {u, y} yields a new spanning tree T̃ of
G. Clearly, L(T̃) \ L(T) ⊆ {u, y}. Thus, if L(T̃) \ L(T) 6= {u, y}, then |L(T̃)| ≤ |L(T)| because
|L(T) ∩ V (K)| ≥ 1. Moreover, if ℓ ≥ 2, then |L(T) ∩ V (K)| ≥ 2 and in turn |L(T̃)| ≤ |L(T)|. So,
we may assume that L(T̃) \ L(T) = {u, y} and ℓ = 1. Then, the degree of u in T − V (K) is 1
and in turn so is v. Now, since ℓ = 1 and u ∈ L(T̃) \ L(T), v is adjacent to no vertex of K in T
and hence v is a leaf of T . Therefore, no matter whether y = v or not, |L(T̃)| ≤ |L(T)| because
|L(T) ∩ V (K)| ≥ 1. ✷

Lemma 4.4 Operation 11 is weakly safe.

Proof. For each i ∈ {1, 2}, let u′i be the vertex in NG(ui) \{u3−i}. Possibly, u
′
1 = u′2. If u

′
1 6= u′2,

then NG1
(u1u2) = {u′1, u

′
2}; otherwise, NG1

(u1u2) = {u′1}.
First, we want to show that opt(G) ≤ opt(G1) + 1. If e 6∈ E(T), then T contains both {u′1, u1}

and {u′2, u2} and we can modify T (without decreasing |L(T)|) by replacing the edge {u′2, u2} with

9

e. So, we can assume that e ∈ E(T). Then, it is clear that modifying T by merging u1 and u2 into a
single vertex u1u2 yields a spanning tree of G1 whose weight is w(T)−1. Thus, opt(G) ≤ opt(G1)+1.

Next, suppose that T1 is a spanning tree of G1. If u′1 = u′2, then u1u2 is a leaf of T1 and
its neighbor in T1 is u′1, and hence modifying T1 by deleting the vertex u1u2 and adding the two
edges {u1, u2}, {u2, u

′
2} yields a spanning tree of G whose weight is w(T1) + 1. So, we assume that

u′1 6= u′2. Clearly, at least one of {u′1, u1u2} and {u′2, u1u2} is an edge of T1. If for exactly one
i ∈ {1, 2}, {u′i, u1u2} ∈ E(T1), then modifying T1 by deleting the vertex u1u2 and adding the two
edges e, {u′i, ui} yields a spanning tree of G whose weight is w(T1) + 1. Otherwise, modifying T1

by deleting the vertex u1u2 and adding the three edges {u′1, u1}, e, {u2, u
′
2} yields a spanning tree

of G whose weight is w(T1) + 1. ✷

Accordingly, we need to modify Step 1 of the algorithm by choosing i from {1, 2, 8, 9, 10} and
also modify Step 2 by choosing i from {3, 4, 11}. Obviously, after the modification, Steps 1 and 2
can be done in O(n2m) time.

5 Computing a Preferred TFPCC C

In this section, we consider how to refine Step 4. Because of Steps 1 and 3, we hereafter assume
that |V (G)| ≥ 9 and there is no i ∈ {1, . . . , 4, 8, . . . , 11} such that Operation i can be performed on
G. Then, we can prove the next lemma:

Lemma 5.1 Suppose that C is a cycle of G with |C| ≤ 8. Let A be the set of ports of C. Then,

the following statements hold.

1. |A| ≥ 2.

2. If |A| = 2, then the two vertices in A are not adjacent in C and |C| 6= 5.

3. If |A| = 2 and |C| = 4, then G[V (C)] and C are the same graph.

Proof. We prove the statements separately as follows.
Statement 1: Since G is connected and |C| < 9 ≤ |V (G)|, |A| ≥ 1. Moreover, since Operation 4

cannot be performed on G, |A| ≥ 2.
Statement 2: Suppose that |A| = 2. Then, the two vertices in A cannot be adjacent in C,

because otherwise Operation 10 could be performed on G. For a contradiction, assume that |C| = 5.
Suppose that u1, . . . , u5 are the vertices of a 5-cycle of C and appear in C clockwise in this
order. Since the two vertices in A are not adjacent in C, we may assume that A = {u1, u3}. If
{u2, u4} ∈ E(G) or {u2, u5} ∈ E(G), then Operation 10 can be performed on G, a contradiction.
So, we assume that {u2, u4} 6∈ E(G) and {u2, u5} 6∈ E(G). If {u1, u4} ∈ E(G) or {u3, u5} ∈ E(G),
then Operation 10 can be performed on G, a contradiction. Thus, we may further assume that
{u1, u4} 6∈ E(G) and {u3, u5} 6∈ E(G). Now, {u4, u5} ∈ E(G), dG(u4) = 2, and dG(u5) = 2. Hence,
Operation 11 can be performed on G, a contradiction.

Statement 3: Suppose that |A| = 2 and |C| = 4. The two vertices in A are not adjacent in C by
Statement 2, and hence G[V (C)] and C are the same graph because otherwise Operation 10 could
be performed on G. ✷

To refine Step 4, our idea is to compute C as a preferred TFPCC of G. Before defining what
the word “preferred” means here, we need to prove a lemma. For ease of explanation, we assume,
with loss of generality, that there is a linear order (denoted by ≺) on the vertices of G.

10

Lemma 5.2 Suppose that u1 and u3 are two vertices of G such that u1 ≺ u3 and Condition C1

below holds. Then, G has an OST in which u1 or u3 is a leaf. Consequently, G has an OST in

which u1 is a leaf.

C1. For two vertices u2 and u4 in V (G) \ {u1, u3}, NG(u1) = NG(u3) = {u2, u4}.

Proof. If u1 is a leaf of T , then we are done. So, assume that u1 is not a leaf of T . Since
Condition C1 holds, u3 is clearly a leaf of T and we can modify T (without decreasing w(T)) by
switching u1 and u3 so that u1 becomes a leaf in T . ✷

If Condition C1 in Lemma 5.2 holds for u1 and u3, we refer to u2 and u4 as the boundary points

of the pair p = (u1, u3), and refer to the edges incident to u1 or u3 as the supports of p.
Let Π be the set of pairs (u1, u3) of vertices in G satisfying Condition C1. It is worth pointing

out that for each p ∈ Π and each boundary point u of p, dG(u) ≥ 3 because otherwise Operation 4
could be performed on G.

Lemma 5.3 No two pairs in Π share a support.

Proof. Obviously, for two pairs in Π to share a support, they have to share their boundary points.
However, no two pairs in Π can share their boundary points, because otherwise Operation 9 could
be performed on G. So, no two pairs in Π share a support. ✷

Lemma 5.4 G has an OST in which u1 is a leaf for each (u1, u3) ∈ Π.

Proof. By Lemma 5.2, we can assume that for every p = (u1, u3) ∈ Π, dT (u1) ≤ 1. In a nutshell,
the proof of Lemma 5.2 shows that even if T is an OST with dT (u1) ≥ 2 , we can modify T without
decreasing w(T) so that dT (u1) ≤ 1. Indeed, the modification only uses the supports of p. Now,
by Lemma 5.3, a similar modification can be done independently for each other p′ ∈ Π. Therefore,
the lemma holds. ✷

Now, we are ready to make two definitions. Let C be a TFPCC of G. C is special if for every
pair (u1, u3) ∈ Π, dC(u1) ≤ 1. C is preferred if C is special and |E(C)| is maximized over all special
TFPCCs of G.

Lemma 5.5 If C is a preferred TFPCC of G, then opt(G) ≤ |E(C)|.

Proof. By Lemma 5.4, G has an OST T̃ such that for each (u1, u3) ∈ Π, dT̃ (u1) = 1. So, by

Lemma 3.5, we can construct a path cover P of G with |E(P)| ≥ w(T̃) such that dP (u1) ≤ 1 for
every (u1, u3) ∈ Π. Thus, P is a special TFPCC of G. Consequently, if C is a preferred TFPCC of
G, then opt(G) = w(T̃) ≤ |E(P)| ≤ |E(C)|. ✷

Lemma 5.6 We can compute a preferred TFPCC C of G in t(2n, 2m) time.

Proof. We construct a new graph G′ from G by adding a new vertex xp and the edge {u1, xp}
for each pair p = (u1, u3) ∈ Π. Obviously, if C∗ is a preferred TFPCC of G, then adding the edges
{xp, u1} with p = (u1, u3) ∈ Π to C∗ yields a TFPCC C′ of G′ with |E(C′)| = |E(C∗)|+ |Π|.

We then compute a maximum TFPCC C′ of G′ in t(|V (G′)|, |E(G′)|) time. By the discussion in
the last paragraph, |E(C′)| ≥ |E(C∗)|+ |Π|. If for some p = (u1, u3) ∈ Π, dC′(xp) = 0, then by the
maximality of C′, dC′(u1) = 2 and we can modify C′ by replacing one of the edges incident to u1 in

11

C′ with the edge {xp, u1}. Clearly, C
′ is still a maximum TFPCC of G′ after the modification. So,

we can repeatedly modify C′ in this way until dC′(xp) = 1 for every p = (u1, u3) ∈ Π. C′ is now a
maximum TFPCC of G′ such that for every p = (u1, u3) ∈ Π, dC′(xp) = 1. Finally, we obtain C from
C′ by deleting the edge {xp, u1} for each p = (u1, u3) ∈ Π. Clearly, |E(C)| = |E(C′)|−|Π| ≥ |E(C∗)|.
Therefore, C is a preferred TFPCC of G. Since |V (G′)| ≤ 2|V (G)| and |E(G′)| ≤ 2|E(G)|, the
lemma holds. ✷

Recall that t(n,m) = O(n2m2) [6]. So, Lemma 5.6 ensures that after modifying Step 4 by
computing C as a preferred TFPCC of G, Step 4 can still be done in t(n,m) time.

6 Preprocessing C

In this section, we consider how to refine Step 5. So, suppose that we have computed a preferred
TFPCC C of G as in Lemma 5.6. To refine Step 5, we repeatedly perform not only Operations 5
through 7 but also the following three operations on C until none of the six is applicable.

Operation 12. If a cycle C1 of C has an edge e1 = {u1, u
′
1} and another cycle or path component

C2 of C has an edge e2 = {u2, u
′
2} such that e = {u1, u2} ∈ E(G) and e′ = {u′1, u

′
2} ∈ E(G),

then combine C1 and C2 into a single cycle or path by replacing e1 and e2 with e and e′.

Operation 13. If an endpoint u1 of a path component P1 of C is adjacent to an endpoint u2 of
another path component P2 of C in G, then combine P1 and P2 into a single path by adding
the edge {u1, u2}.

Operation 14. If e = {u, v} is an edge of a path component of C such that for some isolated vertex
x of C, {u, x} ∈ E(G) and {v, x} ∈ E(G), then replace e by the edges {u, x} and {v, x}.

Operation 12 Operation 13 Operation 14

u1

u’1

u2

u’2

P1
u1

P2
u2

P
u v

x

C1 C2

u1

u’1

u2

u’2

C1 C2

or

Figure 5: Operations 12 through 14, where each wavy line or curve is a path, each dotted edge will
be deleted, and each bold edge will be added.

Lemma 6.1 Immediately after the refined preprocessing step, the following statements hold:

1. C is a TFPCC of G and has at least opt(G) edges.

2. If a path component P of C is of length at most 3, then P is alive.

3. If an endpoint v of a path component P of C is a port of P , then each vertex in NG(v)\V (P)
is an internal vertex of a path component Q of C with |Q| ≥ 2|P |+ 2.

4. No pair (u1, u3) ∈ Π satisfies that u1 appears in a cycle of C.

5. If a dead path component P of C is of length 4, then both endpoints of P are leaves in G.

6. Each 4-cycle C of C has at least three ports.

12

Proof. A short cycle is a cycle of length at most 7. We prove the statements separately as
follows.

Statement 1: Before the refined preprocessing, C has at least opt(G) edges by Lemma 5.5 and
is a TFPCC of G. Since Operation i does not decrease the number of edges in C or creates a new
short cycle or a vertex of degree larger than 2 in C for each i ∈ {5, 6, 7, 12, 13, 14}, Statement 1
holds.

Statement 2: Same as that of Statement 2 in Lemma 3.6.
Statement 3: Suppose that an endpoint v of a path component P of C is a port. Consider an

arbitrary u ∈ NG(v) \ V (P). Since neither Operation 6 nor Operation 13 can be performed on C,
u is an internal vertex of a path component Q of C. Let u1 and u2 be the endpoints of Q. For
each i ∈ {1, 2}, let Qi be the path from u to ui in P . Then, |Q| = |Q1| + |Q2|. Moreover, since
Operation 7 cannot be applied on C, |P |+ |Qi|+ 1 ≤ |Q| for each i ∈ {1, 2}. Thus, 2|P |+ 2 ≤ |Q|.

Statement 4: Before the refined preprocessing, no pair (u1, u3) ∈ Π satisfies that u1 appears in
a cycle of C because C is a preferred TFPCC of G. Moreover, if Operation i creates a new cycle C
in C for some i ∈ {5, 6, 7, 12, 13, 14}, then i = 12 and C is obtained by merging two shorter cycles
in C. Thus, Statement 4 holds.

Statement 5: Let P be a dead path component of C with |P | = 4. Suppose that u1, . . . , u5 are
the vertices of P and they appear in P in this order. If all internal vertices of P are ports, then both
u1 and u5 are leaves of G (and we are done), because otherwise Operation 5 could be performed
on C. Moreover, if at most one internal vertex of P is a port, then G would be disconnected or
Operation 4 could be performed on G, a contradiction. So, we assume that exactly two internal
vertices of P are ports. Now, if {i, j} = {2, 4}, then {u1, u5} 6∈ E(G), {u1, u3} 6∈ E(G), and
{u5, u3} 6∈ E(G) (because otherwise Operation 5 could be performed on C), and in turn both u1
and u5 are leaves of G (and we are done) because otherwise Operation 8 or 9 could be performed
on G. Thus, we may assume that i = 2 and j = 3. Then, since Operation 5 cannot be performed
on C, u1 is a leaf of G and {u1, u2} ∩ NG(u5) = ∅. For the same reason, {u3, u5} 6∈ E(G) or
{u2, u4} 6∈ E(G). Indeed, {u2, u4} ∈ E(G) because otherwise the edge {u2, u3} would be deleted
by Operation 2 or 3, Therefore, {u3, u5} 6∈ E(G) and in turn u5 is also a leaf of G.

Statement 6: Let C be a 4-cycle in C, and A be the set of ports of C. Further let u1, . . . , u4 be
the vertices of C and assume that they appear in C clockwise in this order. By Lemma 5.1, |A| ≥ 2.
For a contradiction, assume that |A| = 2. Then, by Statement 3 in Lemma 5.1, A = {u1, u3} or
A = {u2, u4}. We may assume that A = {u2, u4} and u1 ≺ u3. Then, NG(u1) = NG(u3) = {u2, u4}
by Statement 3 in Lemma 5.1, and in turn (u1, u3) ∈ Π. Since the refined preprocessing of C does
not introduce a new short cycle, C is a cycle in C even before the refined preprocessing. However,
this contradicts the fact that C is a preferred TFPCC of G before the refined preprocessing. ✷

Obviously, the refined preprocessing (i.e., Step 5) can be done in O(nm) time.

7 Transforming C into a Spanning Tree

In this section, we consider how to refine Step 6. So, suppose that we have just performed the
refined preprocessing on C as in Section 6. Let Γ be the set of (ordered) pairs (P,Q) of path
components of C such that |P | ≥ 1 and some endpoint v of P is adjacent to a vertex u of Q in G.
Note that dC(u) = 2 and 2|P | + 2 ≤ |Q| by Statement 3 in Lemma 6.1. Suppose that we obtain a
subset Γ′ of Γ from Γ as follows.

• For each path component P of C such that there are two or more path components Q of C
with (P,Q) ∈ Γ, delete all but one pair (P,Q) from Γ.

13

Now, consider an auxiliary digraph D such that the vertices of D one-to-one correspond to the
path components P of C with |P | ≥ 1 and the arcs of D one-to-one correspond to the pairs in Γ′.
By Statement 3 in Lemma 6.1, D is a rooted forest (in which each leaf is of in-degree 0, each root
is of out-degree 0, and each vertex is of out-degree at most 1).

To transform C into a spanning tree of G, the idea is to modify C in three stages. C is initially
a TFPCC of G and we will always keep C being a TFTCC of G. For each i ∈ {1, 2, 3}, we use
Ci to denote the C immediately after the i-th stage. For convenience, we use C0 to denote the C
immediately before the first stage. Moreover, for each i ∈ {1, 2, 3} and each connected component
C of Ci, we use b(C) to denote the number of edges {u, v} ∈ E(C0) such that {u, v} ⊆ V (C).

In the first stage, we modify C by performing the following step:

1. For each pair (P,Q) ∈ Γ′, add an arbitrary {u, v} ∈ E(G) to C such that u is an endpoint of
P and v appears in Q.

Lemma 7.1 Each connected component of C1 that is not a path or cycle is a tree T̂ satisfying

Condition C2 below:

C2. b(T̂) ≥ 5, |L(T̂)| ≤ b(T̂)− 2, and w(T̂) ≥ 4
5b(T̂).

Proof. Let T̂ be a connected component of C1 that is not a path or cycle. Obviously, T̂ can be
obtained from a tree component T̂D of D by replacing each vertex of T̂D with the corresponding
path component of C and replacing each arc of T̂D corresponding to a pair (P,Q) ∈ Γ′ with an edge
{v, u} ∈ E(G) such that v is an endpoint of P and u appears in Q. Thus, T̂ is clearly a tree.

We next prove that T̂ satisfies Condition C2 by induction on the number of arcs in T̂D. Clearly,
T̂D has at least one edge. In the base case, T̂D has only one arc. Let (P,Q) be the pair in
Γ′ corresponding to the arc. T̂ is obtained from P and Q by connecting them with an edge
{v, u} ∈ E(G) such that v is an endpoint of P and u appears in Q. Thus, w(T̂) = |P | + |Q| − 1,
|L(T̂)| = 3, and b(T̂) = |P | + |Q|. Hence, by Statement 3 in Lemma 6.1, b(T̂) ≥ 3|P | + 2 ≥ 5.

Therefore, |L(T̂)| ≤ b(T̂)− 2 and w(T̂)

b(T̂)
= 1− 1

b(T̂)
≥ 4

5 . This shows that T̂ satisfies Condition C2 in

the base case.
Now, assume that T̂D has at least two arcs. Consider an arbitrary (P,Q) ∈ Γ′ such that the

vertex α of D corresponding to P is a leaf of T̂D. Let T̂
′
D be obtained from T̂D by deleting α, and

T̂ ′ be obtained from T̂ by deleting the vertices of P . Since T̂ ′
D has one fewer arc than T̂D, the

inductive hypothesis implies that b(T̂ ′) ≥ 5, |L(T̂ ′)| ≤ b(T̂ ′) − 2, and w(T̂ ′) ≥ 4
5b(T̂

′). Obviously,

b(T̂) = b(T̂ ′) + |P |, |L(T̂)| = |L(T̂ ′)|+ 1, and w(T̂) = w(T̂ ′) + |P |. Since |P | ≥ 1, it is now easy to
verify that T̂ satisfies Condition C2. ✷

Hereafter, a connected component of C is good if it is a tree T̂ satisfying Condition C2 in
Lemma 7.1 or Condition C3 below, while it is bad otherwise.

C3. w(T̂) ≥ b(T̂) = 4 and |L(T̂)| = 3.

Lemma 7.2 Suppose that C is a bad connected component of C1. Then, C is a cycle of length at

least 4, a 0-path, or a 4-path whose endpoints are leaves of G. Moreover, if C is a 0-path, then the

unique vertex u ∈ V (C) satisfies that each v ∈ NG(u) is an internal vertex of a tree component of

C1 and no two vertices in NG(u) are adjacent in C1.

Proof. Since C is bad, Lemma 7.1 ensures that C is a path or cycle and in turn is a connected
component of C0. Indeed, C cannot be a path of length at least 5, because otherwise C would

14

satisfy Condition C2. Now, by Lemma 6.1, C is a cycle of length at least 4, a 0-path, or a 4-path
whose endpoints are leaves of G.

Suppose that C is a 0-path. Then, C is also 0-path in C0. Let u be the unique vertex in C.
Consider an arbitrary v ∈ NG(u). Since Operation 13 cannot be performed on C0, v is not a leaf of
a tree component of C1. Moreover, since Operation 6 cannot be performed on C0, v does not appear
in a cycle of C1. Furthermore, since Operation 14 cannot be performed on C0, no two vertices in
NG(u) are adjacent in C1. ✷

We next want to define several operations on C none of which will produce a new cycle or a new
bad connected component in C. An operation on C is good if it either just connects two or more
connected components of C into a single good connected component, or modify a good connected
component of C so that it has more internal vertices (and hence remains good).

In the second stage, we modify C by repeatedly performing the following operations on C until
none of them is applicable.

Operation 15. If C has two cycles C1 and C2 such that |C1|+|C2| ≥ 10 and some edge e = {v1, v2}
of G satisfies v1 ∈ V (C1) and v2 ∈ V (C2), then connect C1 and C2 into a single path T by
deleting one edge incident to v1 in C1, deleting one edge incident to v2 in C2, and adding the
edge e.

Operation 16. If C has a cycle C1 of length at least 5 and a good connected component C2 such
that some edge e = {v, u} of G satisfies v ∈ V (C1) and u ∈ V (C2), then connect C1 and C2

into a single tree T by deleting one edge incident to v in C1 and adding the edge e.

Operation 17. If C has a cycle C of length at least 6 and a 4-path component P such that some
edge e = {v, u} of G satisfies v ∈ V (C) and u ∈ V (P), then connect C and P into a single
tree T by deleting one edge incident to v in C and adding the edge e.

Operation 18. If C has a 0-path component P whose unique vertex u has two neighbors v1 and
v2 in G such that v1 and v2 fall into different connected components C1 and C2 of C, then
connect P , C1, and C2 into a single connected component T by adding the edges {u, v1} and
{u, v2}.

Operation 19. If C has a good connected component C1 and another connected component C2

such that some leaf u of C1 is adjacent to a vertex v of C2 in G, then connect C1 and C2

into a single tree component T by deleting one edge incident to v in C2 if C2 is a cycle, and
further adding the edge {u, v}.

Operation 20. If a cycle C of C has an edge e = {v1, v2} such that some u1 ∈ NG(v1) \ V (C)
and some u2 ∈ NG(v2) \ V (C) fall into different connected components C1 and C2 of C other
than C, then connect C, C1, and C2 into a single tree component T by deleting e, deleting
one edge incident to u1 if C1 is a cycle, deleting one edge incident to u2 if C2 is a cycle, and
adding the edges {v1, u1} and {v2, u2}.

Operation 21. If a good connected components C of C is not a Hamiltonian path of G but is a
dead path whose endpoints are adjacent in G, then choose an arbitrary port u of C, modify
C by adding the edge of G between the endpoints of C and deleting one edge incident to u
in C, and further perform Operation 19.

Operation 22. If a good connected component C of C is not a path but has two leaves u and
v with {u, v} ∈ E(G), then modify C by first finding an arbitrary vertex x on the path P

15

between u and v in C with dC(x) ≥ 3, then deleting one edge incident to x in P , and further
adding the edge {u, v}.

Operation 23. If C has a 0-path component C1, a 4-path component P , and a connected com-
ponent C2 other than C1 and P such that the center vertex u3 of P is adjacent to a vertex
x of C2 in G and the unique vertex v of C1 is adjacent to the other two internal vertices u2
and u4 of P (than u3) in G, then connect C1, P , and C2 into a single connected component
T by deleting the edge {u2, u3}, deleting one edge incident to x if C2 is a cycle, and adding
the edges {v, u2}, {v, u4}, {u3, x}.

Operation 15 Operation 16 Operation 17

v1 v2

C2C1

v

C1
C2

v

C P

Operation 18

C2C1

Operation 19

v

C2

C1u
C1u

C2

or

C

First half of Operation 21

C
C1

C2
v1

v2

P u

u2

An example case of Operation 20

u3
u2 u4

v

x
u1 u5

An example case of Operation 23

x

u v

Operation 22

C2

u

Figure 6: Operations 15 through 23, where the filled circle is a port, each wavy line or curve is
a path, each filled triangle is a tree, each dotted edge will be deleted, and each bold edge will be
added.

In the following proofs of Lemmas 7.3 through 7.11, T̂ denotes the new connected component
of C created by the corresponding operation.

Lemma 7.3 Operation 15 is good.

Proof. Obviously, w(T̂) = |C1|+ |C2| − 2, b(T̂) = |C1|+ |C2| ≥ 10, and |L(T̂)| = 2. Thus, T̂ is
good. ✷

Lemma 7.4 Operation 16 is good.

Proof. Obviously, w(T̂) ≥ w(C2)+ |C1|−1 ≥ 4
5b(C2)+ |C1|−1, b(T̂) = b(C2)+ |C1| ≥ b(C2)+5,

and |L(T̂)| ≤ |L(C2)|+ 1. Thus, T̂ is good. ✷

Lemma 7.5 Operation 17 is good.

Proof. Obviously, w(T̂) = |C|+ 2, b(T̂) = |C|+ 4 ≥ 10, and |L(T̂)| = 3. Thus, T̂ is good. ✷

Lemma 7.6 Operation 18 is good.

16

Proof. Since Operation 6 cannot be applied on C0, neither C1 nor C2 is a cycle. Hence, both
C1 and C2 are trees and in turn T̂ is a tree. To show that T̂ is good, we distinguish three cases as
follows.

Case 1: Both C1 and C2 are good. In this case, w(T̂) ≥ w(C1)+w(C2)+1 ≥ 4
5b(C1)+

4
5b(C2)+1,

b(T̂) = b(C1) + b(C2) ≥ 8, and |L(T̂)| ≤ |L(C1)|+ |L(C2)|. Thus, T̂ is clearly good.
Case 2: One of C1 and C2 is good. W.l.o.g., we assume that C1 is good and C2 is bad.

Then, by Lemma 7.2, C2 is either a 0-path or a 4-path whose endpoints are leaves of G. The
former case is impossible, because Operation 13 cannot be performed on C0. In the latter case,
w(T̂) ≥ w(C1) + 4 ≥ 4

5b(C1) + 4, b(T̂) = b(C1) + 4 ≥ 8, and |L(T̂)| ≤ |L(C1)|+ 2, implying that T̂
is good.

Case 3: Both C1 and C2 are bad. In this case, both C1 and C2 are 4-paths whose endpoints
are leaves of G, because Operation 13 cannot be performed on C0. So, w(T̂) = 7, b(T̂) = 8, and
|L(T̂)| = 4, implying that T̂ is good. ✷

Lemma 7.7 Operation 19 is good.

Proof. T̂ is clearly a tree. To show that T̂ is good, we distinguish three cases as follows.
Case 1: C2 is a cycle. In this case, w(T̂) = w(C1)+|C2| ≥

4
5b(C1)+|C2|, b(T̂) = b(C1)+|C2| ≥ 8,

and |L(T̂)| = |L(C1)|. So, T̂ is clearly good.
Case 2: C2 is good. In this case, w(T̂) ≥ w(C1) + w(C2) + 1 ≥ 4

5b(C1) +
4
5b(C2) + 1, b(T̂) =

b(C1) + b(C2) ≥ 8, and |L(T̂)| = |L(C1)|+ |L(C2)| − 1. So, T̂ is clearly good.
Case 3: C2 is bad but not a cycle. In this case, Lemma 7.2 ensures that C2 is either a 0-path

or a 4-path whose endpoints are leaves of G. In the latter case, w(T̂) ≥ w(C1) + 4 ≥ 4
5b(C1) + 4,

b(T̂) = b(C1)+4 ≥ 8, and |L(T̂)| = |L(C1)|+1, implying that T̂ is clearly good. So, we assume the
former case. If C1 satisfies Condition C2, then w(T̂) = w(C1) + 1 ≥ 4

5b(C1) + 1, b(T̂) = b(C1) ≥ 5,

and |L(T̂)| = |L(C1)|, implying that T̂ is good. Otherwise, b(T̂) = b(C1) = 4, w(T̂) = w(C1) + 1 ≥
b(C1) + 1 > b(T̂), and |L(T̂)| = |L(C1)|, implying that T̂ is good. ✷

Lemma 7.8 Operation 20 is good.

Proof. T̂ is clearly a tree. To show that T̂ is good, we distinguish three cases as follows.
Case 1: Both C1 and C2 are cycles. In this case, w(T̂) = |C| + |C1| + |C2| − 2, b(T̂) =

|C|+ |C1|+ |C2| ≥ 12, and |L(T̂)| = 2. Thus, T̂ is clearly good.
Case 2: One of C1 and C2 is a cycle. W.l.o.g., we assume that C2 is a cycle. If C1 is good, then

w(T̂) ≥ w(C1)+|C|+|C2|−1 ≥ 4
5b(C1)+|C|+|C2|−1, b(T̂) = b(C1)+|C|+|C2| ≥ b(C1)+8 ≥ 12, and

|L(T̂)| ≤ |L(C1)| + 1, implying that T̂ is good. So, assume that C1 is bad. Then, by Lemma 7.2,
C1 is a 0-path or 4-path whose endpoints are leaves of G. Indeed, C1 is not a 0-path, because
Operation 13 cannot be performed on C0. Thus, w(T̂) = |C|+ |C2|+2, b(T̂) = |C|+ |C2|+4 ≥ 12,
and |L(T̂)| = 3. Hence, T̂ is good.

Case 3: Neither C1 nor C2 is a cycle. If both C1 and C2 are good, then w(T̂) ≥ |C| +
w(C1) +w(C2) ≥ |C|+ 4

5b(C1) +
4
5b(C2), b(T̂) = |C|+ b(C1)+ b(C2) ≥ b(C1) + b(C2) + 4 ≥ 12, and

|L(T̂)| ≤ |L(C1)|+|L(C2)|, implying that T̂ is good. Similarly, if both C1 and C2 are bad, then both
of them are 4-paths whose endpoints are leaves of G and in turn w(T̂) = |C|+6, b(T̂) = |C|+8 ≥ 12,
and |L(T̂)| = 4, implying that T̂ is good. So, we may assume that C1 is good but C2 is bad. Then,
C2 is a 4-path whose endpoints are leaves of G. Hence, w(T̂) ≥ |C|+w(C1)+3 ≥ |C|+ 4

5b(C1)+3,

b(T̂) = |C|+ b(C1) + 4 ≥ b(C1) + 8 ≥ 12, and |L(T̂)| ≤ |L(C1)|+ 2. Therefore, T̂ is good. ✷

17

Lemma 7.9 Operation 21 is good.

Proof. By Lemma 7.7, Operation 21 is clearly good. ✷

Lemma 7.10 Operation 22 is good.

Proof. The operation clearly decreases the number of leaves in C by 1, and is hence good. ✷

Lemma 7.11 Operation 23 is good.

Proof. T̂ is clearly a tree. To show that T̂ is good, we distinguish three cases as follows.
Case 1: C2 is a cycle. In this case, w(T̂) = |C2| + 3, b(T̂) = |C2| + 4 ≥ 8, and |L(T̂)| = 3. So,

T̂ is clearly good.
Case 2: C2 is good. In this case, w(T̂) ≥ w(C2) + 4 ≥ 4

5b(C2) + 4, b(T̂) = b(C2) + 4 ≥ 8, and

|L(T̂)| ≤ |L(C2)|+ 2. So, T̂ is clearly good.
Case 3: C2 is bad. In this case, C2 is either a 0-path or a 4-path whose endpoints are leaves of

G. In the former case, w(T̂) = 4, b(T̂) = 4, and |L(T̂)| = 3, implying that T̂ is clearly good. In the
latter case, w(T̂) = 7, b(T̂) = 8, and |L(T̂)| = 4, implying that T̂ is clearly good. ✷

We next show that the above operations lead to a number of useful properties of C2.

Lemma 7.12 Each 4-cycle of C2 is adjacent to at most one other connected component of C2 in

G.

Proof. Let C be a 4-cycle in C2. Further let v1, . . . , v4 be the vertices of C and assume
that they appear in C clockwise in this order. By Statement 6 in Lemma 6.1, C has at least
three ports. Without loss of generality, we may assume that v1 through v3 are ports of C. Since
Operation 20 cannot be performed on C2, there is a unique connected component C ′ in C2 such
that NG({v1, v2})\V (C) is a nonempty subset of V (C ′). For the same reason, NG({v2, v3})\V (C)
is a nonempty subset of V (C ′). Moreover, if v4 is also a port of C, then for the same reason,
NG({v3, v4})\V (C) is a nonempty subset of V (C ′). Therefore, in any case, NG(C)\V (C) ⊆ V (C ′)
and hence C is adjacent to only C ′ in G. ✷

Lemma 7.13 No two 4-cycles of C2 are adjacent in G.

Proof. For a contradiction, assume that two 4-cycles C1 and C2 of C2 are adjacent in G. Then,
by Lemma 7.12, G[V (C1) ∪ V (C2)] is a connected component of G. However, this is impossible
because G is connected and |V (G)| ≥ 9. ✷

Lemma 7.14 No 4-cycle C of C2 is adjacent to a 4-path component of C2 in G.

Proof. For a contradiction, assume that a 4-cycle C of C2 is adjacent to a 4-path component
P of C2 in G. Let v1, . . . , v4 be the vertices of C and assume that they appear in C clockwise in
this order. Let B be the set of all u ∈ V (G) \ V (C) such that for some vi ∈ V (C), {u, vi} ∈ E(G).
Since Operation 4 cannot be performed on G, |B| ≥ 2. Moreover, by Lemma 7.12, B ⊆ V (P).

Let u1, . . . , u5 be the vertices of P and assume that they appear in P in this order. Then, P
is a dead 4-path component of C0. So, by Statement 5 in Lemma 6.1, both u1 and u5 are leaves
of G. Thus, B ⊆ {u2, u3, u4}. Since |C| = 4 and C has at least three ports (by Statement 6 in

18

Lemma 6.1), there are two consecutive edges in C whose endpoints all are ports of C. Without loss
of generality, we assume that v1 through v3 are ports of C.

Case 1: {v2, u3} ∈ E(G). In this case, since both v1 and v3 are ports of C and Operation 12
cannot be performed on C0, {u2, u3, u4} ∩ NG(v1) = {u3} and {u2, u3, u4} ∩ NG(v3) = {u3}, and
in turn {u2, u3, u4} ∩ NG(v2) = {u3} as well. Now, since |B| ≥ 2, G has an edge {v4, uj} with
j ∈ {2, 4}. However, we can now see that Operation 12 can be performed on C0, a contradiction.

Case 2: {v2, u3} 6∈ E(G). In this case, since v2 is a port of C, {v2, u2} ∈ E(G) or {v2, u4} ∈
E(G). So, {v1, u3} 6∈ E(G) and {v3, u3} 6∈ E(G), because Operation 12 cannot be performed on
C0. Thus, NG({v1, v2, v3})∩ {u2, u3, u4} is either {u2, u4} or {uj} for some j ∈ {2, 4}. In the latter
case, since |B| ≥ 2, {v4, u3} ∈ E(G) or {v4, u6−j} ∈ E(G), and hence Operation 10 or 12 can
be performed, a contradiction. In the former case, if {v4, u3} ∈ E(G), then Operation 12 can be
performed on C0, a contradiction; otherwise, NG(v4) ⊆ V (C) ∪ {u2, u4} and in turn Operation 10
can be performed on G, a contradiction. ✷

Lemma 7.15 No 4-cycle of C2 is adjacent to a 5-cycle of C2 in G.

Proof. For a contradiction, assume that a 4-cycle C1 of C2 is adjacent to a 5-cycle C2 of C2
in G. For each i ∈ {1, 2}, let vi,1, . . . , vi,|Ci| be the vertices of Ci and assume that they appear
in Ci clockwise in this order. By Statement 6 in Lemma 6.1, C1 has at least three ports, and in
turn three ports of C1 appear in C1 consecutively because |C1| = 4. Without loss of generality, we
assume that v1,1, v1,2, and v1,3 are ports of C1.

By Lemma 7.12, NG(C1) \ V (C1) ⊆ V (C2). Since |C1| + |C2| − 1 = 8 < 9 and Operation 4
cannot be performed on G, |X| ≥ 2, where X is the set of vertices v2,j ∈ V (C2) with NG(v2,j) \
(V (C1) ∪ V (C2)) 6= ∅. We distinguish two cases as follows.

Case 1: X has two vertices adjacent in C2. Without loss of generality, we assume that
{v2,4, v2,5} ⊆ X. Then, since Operation 20 cannot be performed on C2, NG(C1) \ V (C1) ⊆ {v2,2}.
So, Operation 4 can be performed on G, a contradiction.

Case 2: No two vertices of X are adjacent in C2. In this case, since |C2| = 5, |X| = 2.
Without loss of generality, we assume that X = {v2,1, v2,3}. Then, since Operation 20 cannot
be performed on C2, NG(C1) \ V (C1) ⊆ X. Indeed, since Operation 4 cannot be performed on
C2, NG(C1) \ V (C1) = X. So, |NG({v1,1, v1,2}) \ V (C1)| = 1 and |NG({v1,2, v1,3}) \ V (C1)| = 1
because Operation 10 cannot be performed on G. Thus, |NG({v1,1, v1,2, v1,3}) \V (C1)| = 1 because
NG(v1,2) \ V (C1) 6= ∅. Now, since |NG(C1) \ V (C1)| = 2, |NG({v1,3, v1,4}) \ V (C1)| = 2 and in turn
Operation 10 can be performed on G, a contradiction. ✷

Based on the above lemmas in this section, we are now ready to prove the next lemma:

Lemma 7.16 Suppose that C is a connected component of C2. Then, C is a 4-cycle, 5-cycle,

0-path, 4-path, or good connected component. Moreover, the following statements hold:

1. If C is a 0-path, then its unique vertex u satisfies that for a single tree component C ′ of C2,
each v ∈ NG(u) is an internal vertex of C ′, and u is a leaf of G if C ′ is bad.

2. If C is a 4-path component of C2, then its endpoints are leaves of G and each internal vertex

u of C satisfies that each neighbor of u in G is a leaf of G, a vertex of a 5-cycle of C2, or an

internal vertex of a 4-path component or a good connected component of C.

3. If C is a 4-cycle of C2, then each vertex u of C satisfies that each neighbor of u in G is an

internal vertex of a good connected component of C2.

19

4. If C is a 5-cycle of C2, then each vertex u of C satisfies that each neighbor of u in G is an

internal vertex of a 4-path component of C2.

5. If C is a good connected component but not a Hamiltonian path of G, then each leaf u of C
satisfies that each neighbor of u in G is an internal vertex of C.

Proof. By Lemmas 7.2 through 7.11, C is a cycle of length at least 4, 0-path, 4-path, or
good connected component. Indeed, C cannot be a cycle of length 6 or more, because otherwise
Operation 6 could be performed on C1 or Operation i could be performed on C2 for some i ∈
{15, 16, 17}. We next prove the statements separately as follows.

Statement 1: Suppose that C is a 0-path. Let u be the unique vertex in C. Since Operation 18
cannot be performed on C2, NG(u) ⊆ V (C ′) for some connected component C ′ of C2. If C

′ is not a
connected component of C1, then by Lemmas 7.3 through 7.11, C ′ is a good connected component
of C2 and in turn each v ∈ NG(u) is an internal vertex of C ′ (because otherwise Operation 19 could
be performed on C2). So, we may assume that C ′ is also a connected component of C1. Then,
by Lemma 7.2, C ′ is a tree component and each v ∈ NG(u) is an internal vertex of C ′. For a
contradiction, assume that C ′ is bad but u is not a leaf of G. Since C ′ is a bad tree component of
C1 with internal vertices, Lemma 7.2 ensures that C ′ is a 4-path. Let u1, . . . ,u5 be the vertices of
C ′ and assume that they appear in C ′ in this order. Since u is not a leaf of G, Lemma 7.2 ensures
that NG(u) = {u2, u4}. Now, Operation 8 or 23 can be performed on G, a contradiction.

Statement 2: Suppose that C is a 4-path component of C2. Then, C is also a 4-path component
of C1, because Operation i does not produce a new bad connected component in C for each i ∈
{15, . . . , 23}. So, by Lemma 7.2, each endpoint of C is a leaf of G. Consider an arbitrary internal
vertex u of C and an arbitrary neighbor v of u in G. Since Operation 19 cannot be performed
on C2, v is not a leaf of a good connected component of C2. So, if v appears in a good connected
component C ′ of C2, v must be an internal vertex of C ′. Moreover, by Lemma 7.14, v cannot appear
in a 4-cycle of C2. Thus, to finish the proof, we may assume that v appears in a bad tree component
C ′′ of C2. Now, if v appears in a 0-path component of C2, then v is a leaf of G by Statement 1 in
this lemma; otherwise, v cannot be an endpoint of another 4-path component of C2 because each
endpoint of a 4-path component of C2 is a leaf of G.

Statement 3: Let C be a 4-cycle of C2. C cannot be adjacent to a 0-path component of C2 in G,
because Operation 6 cannot be performed on C0 and neither Stage 2 nor Stage 3 produces a new
cycle or a new 0-path component in C. So, by Lemmas 7.13 through 7.15, each v ∈ NG(C) appears
in a good connected component C ′ of C2. Indeed, v must be an internal vertex of C ′, because
Operation 19 cannot be performed on C2.

Statement 4: Let C be a 5-cycle of C2. C cannot be adjacent to a 0-path component of C2 in G,
because Operation 6 cannot be performed on C0 and neither Stage 2 nor Stage 3 produces a new
cycle or a new 0-path component in C. Moreover, since neither Operation 15 nor Operation 16 can
be performed on C2, C cannot be adjacent to a 5-cycle or a good connected component of C2 in G.
So, by Lemma 7.15, each v ∈ NG(C) appears in a 4-path component C ′ of C2. Indeed, v must be
an internal vertex of C ′, because each endpoint of C ′ is a leaf of G.

Statement 5: Supppose that C is a good connected component of C2 but not a Hamiltonian path
of G. Let u be a leaf of C. Since Operation i cannot be performed on C2 for each i ∈ {19, 21, 22},
each v ∈ NG(u) is an internal vertex of C. ✷

Finally, in the third stage, we complete the transformation of C into a spanning tree of G by
further modifying C by performing the following steps:

1. For each cycle C of C, first select an arbitrary edge e = {u, v} ∈ E(G) such that u ∈ V (C)
and v ∈ V (G)\V (C), then delete one edge incident to u in C, and further add e. (Comment:

20

Since no two cycles in C2 are adjacent in G, v appears in a tree component of C. Moreover,
after this step, C has only tree components.)

2. Arbitrarily connect the connected components of C into a tree by adding some edges of G.

It is easy to see that for each i ∈ {15, . . . , 23}, Step i can be done in O(m) time. So, the second
stage takes O(nm) time. Since the other two stages can be easily done in O(m) time, the refined
Step 6 can be done O(nm) time.

8 Performance Analysis

Let g2 (respectively, g3) be the number of internal vertices in connected components of C2 satisfying
Condition C2 (respectively, C3), b2 (respectively, b3) be the total number of edges in C0 whose
endpoints appear in the same connected components of C2 satisfying Condition C2 (respectively,
C3), c4 (respectively, c5) be the number of 4-cycles (respectively, 5-cycles) in C2, and p4 be the
number of 4-path components in C2.

Lemma 8.1 Let Tapx be the spanning tree of G outputted by the refined algorithm. Then, the

following hold:

1. w(Tapx) ≥ 3c4 + 4c5 + 3p4 + g2 + g3 ≥ 3c4 + 4c5 + 3p4 +
4
5b2 + b3.

2. opt(G) ≤ 4c4 + 5c5 + 4p4 + b2 + b3.

3. opt(G) ≤ 3c4 + 5c5 + 3p4 + 2g2 + 2g3.

Proof. We prove the statements separately as follows.
Statement 1: Obvious.
Statement 2: Clear from the fact that opt(G) ≤ |E(C0)| ≤ 4c4 + 5c5 + 4p4 + b2 + b3.
Statement 3: For convenience, let T ′ be obtained from T by rooting T at an internal vertex, and

T ′′ be obtained from T ′ by removing those edges (u, v) such that some 4-cycle of C2 contains both
u and v. Further let I ′ (respectively, I ′′) be the set of vertices in T ′ (respectively, T ′′) that have at
least one child in T ′ (respectively, T ′′). Also let J = I ′ \ I ′′. Clearly, w(T) = |I ′|. Moreover, for
each 4-cycle C of C2, T

′ can contain at most three edges between the vertices of C. So, |J | ≤ 3c4.
Furthermore, Lemma 7.16 ensures that each vertex of I ′ other than

• the vertices in J ,

• the 3p4 internal vertices of 4-path components of C2,

• the 5c5 vertices of 5-cycles, and

• the g2 + g3 internal vertices of good connected components of C2

must have a child in T ′′ that is an internal vertex of a good connected component of C2. So,
w(T) = |I ′| ≤ 3c4 + (5c5 + 3p4 + g2 + g3) + (g2 + g3). ✷

Theorem 8.2 The algorithm achieves an approximation ratio of 13
17 and runs in O(n2m)+t(2n, 2m)

time.

21

Proof. Let Tapx be as in Lemma 8.1, and r = w(Tapx)/opt(G). By Lemma 8.1, r ≥ max{r1, r2},

where r1 = 3c4+4c5+3p4+g2+g3
4c4+5c5+4p4+b2+b3

and r2 = 3c4+4c5+3p4+g2+g3
3c4+5c5+3p4+2g2+2g3

. Note that r1 ≥ min
{

4
5 , r

′
1

}

and

r2 ≥ min
{

4
5 , r

′
2

}

, where r′1 = 3c4+3p4+g2+g3
4c4+4p4+b2+b3

and r′2 = 3c4+3p4+g2+g3
3c4+3p4+2g2+2g3

. So, it suffices to show that

max{r′1, r
′
2} ≥ 13

17 . This is done if r′1 ≥ 13
17 . Thus, we assume that r′1 < 13

17 . Then, c4 + p4 >

17g2+17g3−13b2−13b3. Hence, r
′
2 >

52g2+52g3−39b2−39b3
53g2+53g3−39b2−39b3

≥ min
{

52g2−39b2
53g2−39b2

, 52g3−39b3
53g3−39b3

}

. Now, since

g2 ≥
4
5b2,

52g2−39b2
53g2−39b2

≥ 13
17 . Moreover, since g3 ≥ b3,

52g3−39b3
53g3−39b3

≥ 13
14 . Therefore, r

′
2 >

13
17 . The running

is clearly as claimed. ✷

Recall that t(n,m) = O(n2m2) [6]. So, the algorithm takes O(n2m2) time.

References

[1] D. Binkele-Raible, H. Fernau, S. Gaspers, and M. Liedloff. Exact and Parameterized Algo-
rithms for Max Internal Spanning Tree. Algorithmica, 65(1) (2013) 95-128.

[2] N. Coben, F.V. Fomin, G. Gutin, E.J. Kim, S. Saurabh, and A. Yeo. Algorithm for finding
k-vertex out-trees and its application to k-internal out-branching problem. JCSS, 76 (2010)
650-662.

[3] F.V. Fomin, D. Lokshtanov, F. Grandoni, and S. Saurabh. Sharp seperation and applications
to exact and parameterized algorithms. Algorithmica, 63 (2012) 692-706.

[4] F.V. Fomin, S. Gaspers, S. Saurabh, and S. Thomasse. A linear vertex kernel for maximum
internal spanning tree. JCSS, 79 (2013) 1-6.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman, 1979.

[6] D. Hartvigsen. Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon University,
1984.

[7] M. Knauer and J. Spoerhase. Better Approximation Algorithms for the Maximum Internal
Spanning Tree Problem. Proceedings of WADS 2009, LNCS 5664 (2009) 489-470.

[8] W. Li, J. Chen, and J. Wang. Deeper Local Search for Better Approximation on Maximum
Internal Spanning Tree. Proceedings of ESA, LNCS 8737 (2014) 642-653.

[9] X. Li and D. Zhu. A 4/3-Approximation Algorithm for the Maximum Internal Spanning Tree
Problem. arXiv:1409.3700, 2014.

[10] X. Li, H. Jiang, and H. Feng. Polynomial Time for Finding a Spanning Tree with Maximum
number of Internal Vertices on Interval Graphs. To appear in Proceedings of FAW 2016.

[11] W. Li, J. Wang, J. Chen, and Y. Cao. A 2k-vertex Kernel for Maximum Internal Spanning
Tree. Proceedings of WADS 2015, LNCS 9214 (2015) 495-505.

[12] E. Prieto and C. Sliper. Either/or: Using Vertex Cover Structure in Designing FPT-Algorithms
– the Case of k-Internal Spanning Tree. Proceedings of WADS 2003, LNCS 2748 (2003) 474-
483.

22

[13] E. Prieto. Systematic kernelization in FPT algorithm design. Ph.D. Thesis, The University of
Newcastle, Australia (2005).

[14] E. Prieto and C. Sloper. Reducing to Independent Set Structure – The Case of k-Internal
Spanning Tree. Nord. J. Comput., 12 (2005) 308-318.

[15] G. Salamon. Degree-Based Spanning Tree Optimization. Ph.D. thesis, Budapest University of
Technology and Ecnomics, Hungary, 2009.

[16] G. Salamon. Approximating the Maximum Internal Spanning Tree problem. Theoretical Com-

puter Science 410(50) (2009) 5273-5284.

[17] G. Salamon and G. Wiener. On Finding Spanning Trees with Few Leaves. Information Pro-

cessing Letters 105(5) (2008) 164-169.

[18] H. Shachnai and M. Zehavi. Representative Families: A Unified Tradeoff-Based Approach.
Proceedings of ESA, LNCS 8737 (2014) 786-797.

23

	1 Introduction
	2 Basic Definitions
	3 A Simple 0.75-Approximation Algorithm
	3.1 Reduction Rules
	3.2 The Algorithm

	4 More Safe Reduction Rules
	5 Computing a Preferred TFPCC C
	6 Preprocessing C
	7 Transforming C into a Spanning Tree
	8 Performance Analysis

