Skip to main content

An FPTAS for Computing the Distribution Function of the Longest Path Length in DAGs with Uniformly Distributed Edge Lengths

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Abstract

Given a directed acyclic graph (DAG) \(G=(V,E)\) with n vertices and m edges, we consider random edge lengths. That is, as the input, we have \({{{{\varvec{a}}}}}\in \mathbb {Z}_{>0}^{m}\), whose components are given for each edges \(e\in E\). Then, the random length \(Y_e\) of edge e is a mutually independent random variable that obeys a uniform distribution on \([0,a_e]\). In this paper, we consider the probability that the longest path length is at most a certain value \(x\in \mathbb {R}_{\ge 0}\), which is equal to the probability that all paths in G have length at most x. The problem can be considered as the computation of an m-dimensional polytope \(K_G({{{{\varvec{a}}}}},x)\) that is a hypercube truncated by exponentially many hyperplanes that are as many as the number of paths in G. This problem is \(\#P\)-hard even if G is a directed path. In this paper, motivated by the recent technique of deterministic approximation of \(\#P\)-hard problems, we show that there is a deterministic FPTAS for the problem of computing \(\mathrm{Vol}(K_G({{{{\varvec{a}}}}},x))\) if the pathwidth of G is bounded by a constant p. Our algorithm outputs a value \(V'\) satisfying that \(1\le V'/\mathrm{Vol}(K_G({{{{\varvec{a}}}}},x)) \le 1+\epsilon \) and finishes in \(O(p^{4}2^{1.5p}n(\frac{2mnp}{\epsilon })^{3p}L)\) time, where L is the number of bits in the input. If the pathwidth p is a constant, the running time is \(O(n(\frac{mn}{\epsilon })^{3p}L)\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Intuitively, the breakpoints of the function \(F(x)=\mathrm{Vol}(K_G({{{{\varvec{a}}}}},x))\) increases exponentially with respect to n. For example, consider the case where each component \(a_i\) of \({{{{\varvec{a}}}}}\) is \(a_i=2^i\) for \(i=1,\dots ,n\).

References

  1. Ando, E., Kijima, S.: An FPTAS for the volume computation of \(0-1\) knapsack polytopes based on approximate convolution. Algorithmica 76, 1245–1263 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ando, E., Ono, H., Sadakane, K., Yamashita, M.: Computing the exact distribution function of the stochastic longest path length in a DAG. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 98–107. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02017-9_13

    Chapter  Google Scholar 

  3. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom. 2, 319–326 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blaauw, D., Chopra, K., Srivastava, A., Scheffer, L.: Statistical timing analysis: from basic principles to state of the art. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27, 589–606 (2008)

    Article  Google Scholar 

  5. Bodlaender, H.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an \(O^\ast (n^3)\) volume algorithm. In: 47th Annual ACM Symposium on the Theory of Computing, pp. 539–548. ACM, New York (2015)

    Google Scholar 

  7. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17, 967–974 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38, 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elekes, G.: A geometric inequality and the complexity of computing volume. Discrete Comput. Geom. 1, 289–292 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gopalan, P., Klivans, A., Meka, R.: Polynomial-time approximation schemes for knapsack and related counting problems using branching programs. arXiv:1008.3187v1 (2010)

  11. Gopalan, P., Klivans, A., Meka, R., Štefankovič, D., Vempala, S., Vigoda, E.: An FPTAS for #knapsack and related counting problems. In: 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 817–826. IEEE Publications, New York (2011)

    Google Scholar 

  12. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Combin. Theory Ser. B 82, 138–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, J., Shi, T.: A fully polynomial-time approximation scheme for approximating a sum of random variables. Oper. Res. Lett. 42, 197–202 (2014)

    Article  MathSciNet  Google Scholar 

  14. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1986)

    Book  MATH  Google Scholar 

  15. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an \(O^\ast (n^4)\) volume algorithm. J. Comput. Syst. Sci. 72, 392–417 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Štefankovič, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time approximation scheme for counting knapsack solutions. SIAM J. Comput. 41, 356–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vaidya, P.: An algorithm for linear programming which requires \(O(((m + n)n^2+ (m + n)^{1.5}n)L)\) arithmetic operations. Math. Program. 47, 175–201 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 15K15945. The author thanks the anonymous referees for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ei Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ando, E. (2017). An FPTAS for Computing the Distribution Function of the Longest Path Length in DAGs with Uniformly Distributed Edge Lengths. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics