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This paper proposes a technique to specify and verify the correct synchronization of 
concurrent programs with condition variables. We define correctness of synchronization 
as the liveness property: “every thread synchronizing under a set of condition variables 
eventually exits the synchronization block”, under the assumption that every such 
thread eventually reaches its synchronization block. Our technique does not avoid the 
combinatorial explosion of interleavings of thread behaviours. Instead, we alleviate it 
by abstracting away all details that are irrelevant to the synchronization behaviour of 
the program, which is typically significantly smaller than its overall behaviour. First, we 
introduce SyncTask, a simple imperative language to specify parallel computations that 
synchronize via condition variables. We consider a SyncTask program to have a correct 
synchronization iff it terminates. Further, to relieve the programmer from the burden 
of providing specifications in SyncTask, we introduce an economic annotation scheme 
for Java programs to assist the automated extraction of SyncTask programs capturing the 
synchronization behaviour of the underlying program. We show that every Java program 
annotated according to the scheme (and satisfying the assumption mentioned above) has a 
correct synchronization iff its corresponding SyncTask program terminates. We then show 
how to transform the verification of termination of the SyncTask program into a standard 
reachability problem over Coloured Petri Nets that is efficiently solvable by existing Petri 
Net analysis tools. Both the SyncTask program extraction and the generation of Petri Nets 
are implemented in our STaVe tool. We evaluate the proposed framework on a number of 
test cases.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Condition variables in concurrent programs. Condition variables (CV) are a commonly used synchronization mechanism to coor-
dinate multithreaded programs. Threads wait on a CV, meaning they suspend their execution until another thread notifies
the CV, causing the waiting threads to resume their execution. The signalling is asynchronous: the effect of the notification 
can be delayed. If no thread is waiting on the CV, then the notification has no effect. CVs are used in conjunction with 
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01 class Utilizer extends Thread {
synchronized(lock) {

03 while (!resource_available) {
lock.wait();

05 }
}

07 }

class Provider extends Thread {
09 synchronized(lock) {

// prepare resource
11 resource_available = true;

lock.notify();
13 }

}

Fig. 1. A simple Java program using wait/notify.

locks; a thread must have acquired the associated lock for notifying or waiting on a CV, and if notified, must reacquire the 
lock.

Many widely used programming languages feature condition variables. In Java, for instance, they are provided both 
natively as an object’s monitor [1], i.e., a pair of a lock and a CV, and in the java.util.concurrent library, as one-
to-many Condition objects associated to a Lock object. C/C++ have similar mechanisms provided by the POSIX thread 
(Pthread) library, and C++ features CVs natively since 2011 [2] as the std::condition_variable class. The mechanism 
is typically employed when the progress of threads depends on the state of a shared variable, to avoid busy-wait loops that 
poll the state of this shared variable.

Example 1 (Condition variables in Java). Fig. 1 shows a simple example with two threads: The first thread, Utilizer, wants to 
use a shared resource. The resource is guarded with a common lock (line 2) to ensure that only one thread, the lock holder, 
can change the state of the resource. Because no high-level constructs like await(resource_available) exist in Java, 
the Utilizer thread has to check if the condition holds by using a conditional statement (line 3). If the condition is false, the 
Utilizer suspends itself by calling wait in line 4. This call implicitly relinquishes the lock, to allow another thread to access 
it and modify the condition variable. At some point, another thread may make the resource available. That thread then has 
to signal the state change to the condition variable. In our example, thread Provider uses the same lock to access the shared 
variable, and calls notify to signal a change in line 12.

As a result of that signal, one of the waiting threads is woken up. It has first to re-check the condition, since it might have 
been re-invalidated by another thread in the meantime. To do this, the lock is (implicitly) re-acquired. In case another thread 
has already consumed the resource, and resource_available is again false, the while loop in line 3 is re-entered. 
Otherwise, the waiting thread may proceed under the assumption that resource_available is true. This assumption 
holds if all accesses to the shared condition variable are protected by a common lock, i.e., if the whole program is data race 
free.

The notify method wakes up any one thread that is waiting at the time the notification is sent; there is no mechanism 
to ensure that a particular thread gets woken up. If multiple waiting threads may check or use shared conditions in different 
ways (for example, by using a function over multiple shared variables), the notifying thread should call notifyAll, to 
ensure each waiting thread gets woken up once and can re-check the condition variable to see if the “right” condition is 
true.

Waiting threads may get interrupted in real Java programs, so they have to guard any call to wait with a try/catch
block, to catch an InterruptedException. Furthermore, the Java Specification [3, § 17.2] permits (but discourages) JVM 
implementations to perform spurious wake-ups, and reinforces the coding practice of invoking wait inside loops guarded 
by a logical condition necessary for thread progress. We elide these functionalities in our paper.

Writing correct programs using condition variables is challenging, mainly because of the complexity of reasoning about 
asynchronous signalling. Nevertheless, condition variables have not been addressed sufficiently with formal techniques, to 
no small part due to this complexity. For instance, Leino et al. [4] acknowledge that verifying the absence of deadlocks 
when using CVs is hard because a notification is “lost” if no thread is waiting on it. Thus, one cannot verify locally whether 
a waiting thread will eventually be notified. Furthermore, the synchronization conditions can be quite complex, involving 
both control-flow and data-flow aspects as arising from method calls; their correctness thus depends on the global thread 
composition, i.e., the type and number of parallel threads. All these complexities suggest the need for programmer-provided 
annotations to assist the automated analysis, which is the approach we are following here.

In this work, we present a formal technique for specifying and verifying that “every thread synchronizing under a set of 
condition variables eventually exits the synchronization”, under the assumption that every such thread eventually reaches 
its synchronization block. The assumption itself is not addressed here, as it does not pertain to correctness of the synchro-
nization, and there already exist techniques for dealing with such properties (see, e.g., [5]). Note that the above correctness 
notion applies to a one-time synchronization on a condition variable only; generalizing the notion to repeated synchroniza-
tions is left for future work. To the best of our knowledge, the present work is the first to address a liveness property 
involving CVs. As the verification of such properties is undecidable in general, we limit our technique to programs with 
bounded data domains and a bounded number of threads. Still, the verification problem is subject to a combinatorial ex-
plosion of thread interleavings. Our technique alleviates the state space explosion problem by delimiting the relevant aspects 
of the synchronization.



176 P. de C. Gomes et al. / Science of Computer Programming 163 (2018) 174–189
SyncTask. First, we consider correctness of synchronization in the context of a synchronization specification language. As we 
target arbitrary programming languages that feature locks and condition variables, we do not base our approach on a subset 
of an existing language, but instead introduce SyncTask, a simple concurrent programming language where all computations 
occur inside synchronized code blocks. We define a SyncTask program to have a correct synchronization iff it terminates. 
The SyncTask language has been designed to capture common patterns of CV usage, while abstracting away from irrele-
vant details. It has the relevant constructs for synchronization, such as locks, CVs, conditional statements, and arithmetic 
operations. However, it is non-procedural, data types are bounded, and it does not allow dynamic thread creation. These 
restrictions render the state-space of SyncTask programs finite, and make the termination problem decidable.

Verification of concurrent programs. Next, we address the problem of verifying the correct usage of CVs in real concurrent 
programming languages. We show how SyncTask can be used to capture the synchronization of a Java program, provided it 
is bounded. Object-oriented languages similar to Java, such as C++ and C#, can be analyzed likewise. There is a consensus 
in Software Engineering that synchronization in a concurrent program must be kept to a minimum, both in the number 
and complexity of the synchronization actions, and in the number of places where it occurs [6,7]. This avoids the latency of 
blocking threads, and minimizes the risk of errors, such as dead- and live-locks. As a consequence, many programs present a 
finite (though arbitrarily large) synchronization behaviour. That is, the number of variables involved in the synchronization, 
and their data domains are bounded.

Implementation. To assist the automated extraction of finite synchronization behaviour from Java programs as SyncTask pro-
grams, we introduce an annotation scheme, which requires the user to (correctly) annotate, among others, the initialization of 
new threads (i.e., creation of Thread objects), and to provide the initial state of the variables accessed inside the synchro-
nized blocks. We establish that for correctly annotated Java programs with bounded synchronization behaviour, correctness 
of synchronization is equivalent to termination of the extracted SyncTask program.

As a proof-of-concept of the algorithmic solvability of the termination problem for SyncTask programs, we show how 
to transform it into a reachability problem on hierarchical Coloured Petri Nets2 (CPNs) [8]. We define how to extract CPNs 
automatically from SyncTask programs, following a previous technique from Westergaard [9]. Then, we establish that a 
SyncTask program terminates if and only if the extracted CPN always reaches dead markings (i.e., CPN configurations without 
successors) where the tokens representing the threads are in a unique end place. Standard CPN analysis tools can efficiently 
compute the reachability graphs, and check whether the termination condition holds. Also, in case that the condition does 
not hold, an inspection of the reachability graph easily provides the cause of non-termination.

Evaluation. We implement the extraction of SyncTask programs from annotated Java and the translation of SyncTasks to 
CPNs as the STaVe tool. We evaluate the tool on two test-cases, by generating CPNs from annotated Java programs and 
analyzing these with CPN Tools [10]. The first test-case evaluates the scalability of the tool w. r. t. the size of program code 
that does not affect the synchronization behaviour of the program. The second test-case evaluates the scalability of the tool 
w. r. t. the number of synchronizing threads. The results show the expected exponential blow-up of the state-space, but we 
were still able to analyze the synchronization of several dozens of threads.

In summary, this work makes the following contributions: (i) the SyncTask language to model the synchronization be-
haviour of programs with CVs, (ii) an annotation scheme to aid the extraction of the synchronization behaviour of Java 
programs, (iii) an extraction scheme of SyncTask models from annotated Java programs, (iv) a reduction of the termination 
problem for SyncTask programs to a reachability problem on CPNs, (v) an implementation of the framework by means of
STaVe, and (vi) its experimental evaluation.

Outline. The remainder of the paper is organized as follows. Section 2 introduces SyncTask. Section 3 describes the mapping 
from annotated Java to SyncTask, while Section 4 presents the translation into CPNs. Section 5 presents STaVe and its 
experimental evaluation. We discuss related work in Section 6. Section 7 concludes and suggests future work.

2. SyncTask

SyncTask abstracts from most features of full-fledged programming languages. For instance, it does not have objects, pro-
cedures, exceptions, etc. However, it features the relevant aspects of thread synchronization. We now describe the language 
syntax, types, and semantics.

2.1. Syntax and types

The SyncTask syntax is presented in Fig. 2. A program has two main parts: ThreadType*, which declares the different 
types of parallel execution flows, and Main, which contains the variable declarations and initializations and defines how the 
threads are composed, i.e., it statically declares how many threads of each type are spawned.

2 The choice of formalism has been mainly based on the simplicity of CPNs as a general model of concurrency, rather than on the existing support for 
efficient model checking. For the latter, model checking tools exploiting parametricity or symmetries in the models may prove more efficient in practice.
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SyncTask ::= ThreadType* Main

ThreadType ::= Thread ThreadName { SyncBlock* }

Main ::= main { VarDecl* StartThread* }

StartThread ::= start(Const,ThreadName);

Expr ::= Const | VarName | Expr ⊕ Expr

| min(VarName) | max(VarName)

VarDecl ::= VarType VarName(Expr*);

VarType ::= Bool | Int | Lock | Cond
SyncBlock ::= synchronized (VarName) Block

Block ::= { Stmt* }

Assign ::= VarName = Expr ;

Stmt ::= SyncBlock | Block

| Assign | skip;
| while Expr Stmt

| if Expr Stmt else Stmt

| notify(VarName);

| notifyAll(VarName);

| wait(VarName);

Fig. 2. SyncTask syntax.

01 Thread Producer {
synchronized(m_lock){

03 while(b_els==max(b_els)){
wait(m_cond);

05 }
if (b_els<max(b_els)) {

07 b_els=(b_els+1);
} else {

09 skip;
}

11 notifyAll(m_cond);
}

13 }

Thread Consumer {
15 synchronized(m_lock){

while((b_els==0)){
17 wait(m_cond);

}
19 if((b_els>0)) {

b_els=(b_els-1);
21 } else {

skip;
23 }

notifyAll(m_cond);
25 }

}

27 main {
Lock m_lock();

29 Cond m_cond(m_lock);
Int b_els(0,7,1);

31 start(2,Consumer);
start(1,Producer);

33 }

Fig. 3. Modelling of synchronization via a shared buffer in SyncTask.

Each ThreadType consists of adjacent SyncBlocks, which are critical sections defined by a code block and a lock. A code 
block is defined as a sequence of statements, which may even be another SyncBlock. Notice that this allows nested 
SyncBlocks, thus enabling the definition of complex synchronization schemes with more than one lock.

There are four primitive types: booleans (Bool), bounded integers (Int), reentrant locks (Lock), and condition vari-
ables (Cond). Expressions are evaluated as in Java. The Boolean and integer operators are the standard ones, while max and
min return a variable’s bounds. Operations between integers with different bounds (overloading) are allowed. However, an 
out-of-bounds assignment leads the program to an error configuration.

Condition variables are manipulated by the unary operators wait, notify, and notifyAll. Currently, the language 
provides only two control flow constructs: while and if-else. These suffice for the illustration of our technique, while 
the addition of other constructs is straightforward.

The Main block contains the global variable declarations with initializations (VarDecl*), and the thread composi-
tion (StartThread*). A variable is defined by declaring its type and name, followed by the initialization arguments. The 
number of parameters varies per type: Lock takes no arguments; Cond is initialized with a lock variable; Bool takes ei-
ther a true or a false literal; Int takes three integer literals as arguments: the lower and upper bounds, and the initial 
value, which must be in the given range. Finally, start takes a positive number and a thread type, signifying the number 
of threads of that type that it spawns.

Example 2 (SyncTask program). The program in Fig. 3 models synchronization via a shared buffer. Producer and Con-
sumer represent the synchronization behaviour: threads synchronize via the CV m_cond to add or remove elements, and 
wait if the buffer is full or empty, respectively. Waiting threads are woken up by notifyAll after an operation is per-
formed on the buffer, and compete for the monitor to resume execution. The main block contains variable declarations and 
initialization. The lock m_lock is associated to m_cond. b_els is a bounded integer in the interval [0,7], with initial value 
set to 1, and represents the number of elements in the buffer. One Producer and two Consumer threads are spawned 
with start.

Notice that this SyncTask program simulates the usage of a Java monitor since it uses a pair of lock and CV for synchro-
nization. However, it could be more efficiently implemented with two CVs associated to the same lock: one to notify when 
the buffer is full, and another when it is empty. This alternative approach simulates the usage of Condition and Lock
from the java.util.concurrent concurrency package.

2.2. Structural operational semantics

We now define the semantics of SyncTask, to provide the means for establishing a formal correctness result.
The semantic domains are defined as follows. Booleans are represented as usual. Integer variables are triples Z × Z ×Z, 

where the first two elements are the lower and upper bound, and the third is the current value. A lock o is defined as 
(Thread_id ×N

+) ∪ ⊥, which is either ⊥ if the lock is free, or a pair of the id of the thread holding the lock, and a counter 
of how many times the lock was acquired by this thread.
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[s1]a T |(θ,synchronized(o) b, R),μ −→ T |(θ,synchronized’(o) b, R),μ[o �→ (θ,1)]

[s2]b T |(θ,synchronized(o) b, R),μ −→ T |(θ,synchronized’(o) b, R),μ[o �→ (θ,n + 1)]

[s3]b T |(θ,b1, R),μ −→ T |(θ,b2, X),μ�

T |(θ,synchronized’(o) b1, R)),μ −→ T |(θ,synchronized’(o) b2, X),μ�

[s4]c T |(θ,synchronized’(o) ε, R)),μ −→ T |(θ, ε, R),μ′[o �→ (θ,n − 1)]

[s5]d T |(θ,synchronized’(o) ε, R),μ −→ T |(θ, ε, R),μ′[o �→ ⊥]

[wt]e T |(θ,wait(d), R),μ → T |(θ, ε, (W ,d,n)),μ[lock(d) �→ ⊥]

[nf1]ef T |(θ,notify(d), R),μ → T |(θ, ε, R),μ

[nf2]eg T |(θ,notify(d), R)|(θ ′, t′, (W ,d,n)),μ → T |(θ, ε, R)|(θ ′, t′, (N,d,n)),μ

[na1]ef T |(θ,notifyAll(d), R),μ → T |(θ, ε, R),μ

[na2]eg T |(θ,notifyAll(d), R)|T d
W ,μ → T |(θ, ε, R)|{(θ ′, t′, (N,d,n))|(θ ′, t′, (W ,d,n)) ∈ T d

W },μ

[rs]h T |(θ, t, (N,d,n)),μ → T |(θ, t, R),μ[lock(d) �→ (θ,n)]

aμ(o) = ⊥ bμ(o) = (θ,n) cμ(o) = (θ,n) ∧ n > 1 dμ(o) = (θ,1)

eμ(lock(d)) = (θ,n) f waitset(d) = ∅ g waitset(d) �= ∅ hμ(lock(d)) = ⊥

Fig. 4. Operational rules for synchronization.

A condition variable d only maps to its associated lock (Lock is the data domain); here is where the one-to-many relation 
from locks to CVs is defined. The auxiliary function lock(d) returns the associated lock to d. Note that the set of threads 
waiting on a condition variable is not stored on the CV itself; below we define that this is stored at the thread state.

SyncTask contains global variables only, and all memory operations are synchronized. Thus, we assume the memory to 
be sequentially consistent [11]. Let μ represent a program’s memory. We write μ(l) to denote the value of variable l, and 
μ[l �→ v] to denote the update of l in μ with value v .

A thread state is either running (R) if the thread is executing, waiting (W ) if it has suspended the execution on a CV, 
or notified (N) if another thread has woken up the suspended thread, but the lock has not been reacquired yet. The states 
W and N also contain the CV d that a thread is/was waiting on, and the number n of times it must reacquire the lock to 
proceed with the execution. The auxiliary function waitset(d) returns the id’s of all threads waiting on a CV d.

We represent a thread as (θ, t, X), where θ denotes its id, t the executing code, and X its thread state. We write 
T = (θi, ti, Xi)|(θ j, t j, X j) for a parallel thread composition, with θi �= θ j . Also, T |(θ, t, X) denotes a thread composition, 
assuming that θ is not defined in T . For convenience, we abuse set notation to denote the composition of threads in the 
set; e.g., T d

W = {(θ, t, (W , d, n))} represents the composition of all threads in the wait set of d. A program configuration is a 
pair (T , μ) of the threads’ composition and its memory. A thread terminates if the program reaches a configuration where 
its code t is empty (ε); a program terminates if all its threads terminate. We say that a SyncTask program has a correct 
synchronization iff it terminates.

The initial configuration is defined with the declarations in Main. As expected, the variable initializations set the initial 
value of μ. For example, Int i(lb,ub,v) defines a new variable such that μ(i) = (lb, ub, v), lb ≤ v ≤ ub, and Lock o()
initializes a lock μ(o) = ⊥. The thread composition is defined by the start declarations; e.g., start(2,t) adds two 
threads of type t to the thread composition: (θ, t, R)|(θ ′, t, R).

Fig. 4 presents the operational rules, with superscripts a−h denoting conditions. Rule names with prefixes s, wt, nf, 
na and rs are short for synchronized, wait, notify, notifyAll and resume, respectively. We only define the rules for the 
synchronization statements, as the rules for the remaining statements are standard [12, § 3.4-8].

In rule [s1], a thread acquires a lock, if available, i.e., if it is not assigned to any other thread and the counter is zero. 
Rule [s2] represents lock reentrancy and increases the lock counter. Both rules replace synchronized with a primed 
version to denote that the execution of synchronization block has begun. Rule [s3] applies to the computation of statements 
inside synchronized blocks, and requires that the thread holds the lock. Rule [s4] decreases the counter upon terminating 
the execution of a synchronized block, but preserves the lock. In rule [s5], a thread finishes the execution of a synchronized 
block, and relinquishes the lock.

In the [wt] rule, a thread changes its state to W , stores the counter of the CV’s lock, and releases it. The rules [nf1] and 
[na1] apply when a thread notifies a CV with an empty wait set; the behaviour is the same as for the skip statement. By 
rule [nf2], a thread notifies a CV, and one thread in its wait set is selected non-deterministically, and its state is changed 
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Resource annotation:

@resource [ResourceId] (classes)

[@object Id [-> Sid]]

@value Id [-> Sid]

@capacity Id

[@defaultval Int]

[@defaultcap Int]

@predicate (methods)

@inline [@maps Id->@{ Code }@]

@code -> @{ Code }@

@operation (methods)

@inline [@maps Id->@{ Code }@]

@code -> @{ Code }@

Synchronization annotation:

@syncblock [ThreadId] (synchronized blocks)

@resource Id[:ResourceId] -> Sid

@lock Id -> Sid

@condvar Id -> Sid

@monitor Id -> Sid

Initialization annotation:

@synctask [STid] (methods)

@resource Id[:ResourceId] -> Sid

@lock Id -> Sid

@condvar Id -> Sid

@monitor Id -> Sid

@thread [Int:ThreadId]

Fig. 5. Annotation language for Java programs.

to N . Rule [na2] is similar, but all threads in the wait set are awoken. By the rule [rs], a thread reacquires all the locks it 
had relinquished, changes the state to R , and resumes the execution after the control point where it invoked wait.

3. From annotated Java to SyncTask

The annotation process supported by STaVe relies on the programmer’s knowledge about the intended synchronization, 
and consists of providing hints to the tool to automatically map the synchronization to a SyncTask program. In this section 
we present an annotation scheme for writing such hints, illustrate SyncTask extraction on an example, define our notion 
of synchronization correctness for Java programs, and characterize the notion as termination of the corresponding SyncTask 
program.

3.1. An annotation language and annotation scheme for Java

An annotation in STaVe binds to a specific type of Java declaration (e.g., classes or methods). The annotation starts in 
a comment block immediately above a declaration, with additional annotations inside the declaration’s body. Annotations 
share common keywords (though with a different semantics), and overlap in the declaration types they may bind to. The 
ambiguity is resolved by the first keyword (called a switch) found in the comment block. Comments that do not start with 
a keyword are ignored.

Fig. 5 presents the annotation language. Arguments given within square brackets are optional, allowing the programmer 
to (attempt to) leave their inference to STaVe, while text within parentheses tells which declaration types the annotation 
binds to. The programmer has to provide, by means of annotations, the following three types of information: resources, 
synchronization and initialization. Below, we describe these information types, and how they should be provided, i.e., our 
annotation scheme.

A resource annotates data types of variables that are manipulated by the synchronization and influence its progress, 
such as loop guards. The annotation defines an abstraction of the data structure state into a bounded integer, and how 
the methods operate on it. Potentially the bounded integer is a ghost variable (as in [13]), and in this case we say that 
the variable extends the program memory. For example, the annotation abstracts a linked list or a buffer to its size. More 
elaborated, compound data types may be annotated, such as stacks or lists containing elements from a bounded domain. 
However, if a thread’s progress depends on an element’s value, then the structure cannot be abstracted into a single bounded 
integer; instead, we require an initialization annotation (see below) for each element of the data structure.

Resources bind to classes only. The switch @resource starts the declaration. In case that a resource definition is spread 
across several classes (because of inheritance), it requires a common ResourceId for each annotated class. The @object
keyword is optional and instructs STaVe that the data structure to analyze is a given variable or field in the annotated 
class. @value defines which class member, or ghost variable, stores the abstract state. Both allow an optional mapping 
to an alias Sid, which becomes mandatory in case the resource is defined in more than one class. @capacity defines 
the upper bound for @value. @defaultval and @defaultcap define the resource’s default @value and @capacity, 
respectively; these may be overwritten in the initialization annotation (see below). The keyword @operation binds to 
method declarations, and specifies that the method potentially alters the resource state. Similarly, @predicate binds to 
methods and specifies that the method returns a predicate about the state.

There are two ways to extract an annotated method’s behaviour. @code tells STaVe not to process the method, but 
instead to associate it to the code enclosed between @{ and }@, while @inline tells STaVe to try to infer the method 
declaration. The inline is potentially aided by @maps declarations, which syntactically replaces a Java command (e.g., a 
method invocation) with a SyncTask code snippet.

The synchronization annotation defines the observation scope. It binds to synchronized blocks and methods, and 
the switch @syncblock starts the declaration. Similarly to the @resource switch, a common ThreadId is required 
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01 class Producer extends Thread {
Buffer pbuf;

03 Producer(Buffer b){pbuf=b;}
public void run() {

05 /*@syncblock
@monitor pbuf -> m

07 @resource pbuf:Buffer->b_els*/
synchronized(pbuf) {

09 while (pbuf.full())
pbuf.wait();

11 pbuf.add();
pbuf.notifyAll();

13 }
}

15 }
class Consumer extends Thread {

17 Buffer cbuf;
Consumer(Buffer b){cbuf=b;}

19 public void run() {
/*@syncblock

21 @monitor cbuf -> m
@resource cbuf:Buffer->b_els*/

23 synchronized(cbuf) {
while (cbuf.empty())

25 cbuf.wait();
cbuf.remove();

27 cbuf.notifyAll();
}

29 }
}

31 /*@resource @capacity cap
@object els -> els

33 @value els -> els */
class Buffer {

35 int els; final int cap;
/* @operation @inline */

37 void remove(){if (els>0)els--;}
/* @operation @inline */

39 void add(){if (els<cap)els++;}
/* @predicate @inline */

41 boolean full(){return els==cap;}
/* @predicate @inline */

43 boolean empty(){return els==0;}
/*@synctask Buffer

45 @monitor b -> m
@resource b:Buffer->b_els */

47 static void main(String[] s) {
Buffer b = new Buffer();

49 b.els = 1; b.cap = 7;
/* @thread */

51 Consumer c1 = new Consumer(b);
/* @thread */

53 Consumer c2 = new Consumer(b);
/* @thread */

55 Producer p = new Producer(b);
c1.start();

57 p.start();
c2.start();

59 }
}

Fig. 6. Annotated Java program synchronizing via shared buffer.

in case the annotation is defined in more than one method or block. Nested, inner synchronization blocks and methods 
are not annotated; all the required information has to be provided at the top-level annotation. Here, @resource is not
a switch, and thus has a different meaning. It defines that a local variable Id is a reference to a shared object of an 
(optional) annotated resource type (ResourceId), and is referenced by an alias Sid across other @syncblock declarations. 
The keywords @lock and @condvar define which mutex and condition variable object are observed. @monitor has 
the combined effect of both keywords for an object’s monitor, i.e., a pair of a lock and a condition variable. Similarly to
@resource, these require a mapping an alias that is common to other synchronization declarations.

Initialization annotations define the global pre-condition for the elements involved in the synchronization, i.e., they de-
fine initial values for locks, condition variables and resource declarations. They also define the global thread composition, 
i.e., how many and which type of threads participate in the synchronization. Initializations bind to methods, and the switch
@synctask starts the declaration. Here, @resource, @lock, @condvar and @monitor instantiate with program vari-
ables the shared aliases defined at @syncblock. Finally, @thread defines that the following object corresponds to a 
spawned thread that synchronizes within the observed synchronization objects. The object’s type is automatically detected, 
and must have been annotated with a synchronization annotation. Alternatively, the annotation can be followed by a thread 
type and a number indicating how many of these are spawned, so that the thread instantiation becomes less verbose.

Some of the above information STaVe is capable of inferring itself; the remaining information needs to be provided by 
the programmer. STaVe will always indicate when the provided hints are insufficient. This is discussed in more detail in 
Section 5.

Example 3 (Annotated Java program). The SyncTask program in Fig. 3 was generated from the Java program in Fig. 6. We now 
discuss how the annotations delimit the expected synchronization, indirectly illustrating the SyncTask extraction.

The @syncblock annotations (lines 5/20) add the following synchronized blocks to the observed synchroniza-
tion behaviour, and its arguments @monitor and @resource (lines 6/21 and 7/22, respectively) map local references to 
shared aliases. The @resource annotation (line 31) starts the definition of a resource type. @value, @object, @ca-
pacity (lines 31/32/33) define how the abstract state is represented by a bounded integer. Here, to keep the running 
example simple, the abstract state has been chosen to be equal to the bounded integer els. However, in a typical buffer 
implementation the abstraction would be from the buffer content to a ghost variable containing the number of elements in 
the buffer. The @operation (lines 36/38) and @predicate (lines 40/42) annotations define how the methods operate on 
the state. Notice that the annotated methods have been inlined in Fig. 3, i.e., add is inlined in lines 6–10. The @synctask
annotation above main starts the declaration of locks, CVs and resources, and @thread annotations add the underneath 
objects to the global thread composition.

The annotations provided in this example were sufficient for STaVe to infer that different variables that are spread along 
the code actually point to the relevant artifacts. Furthermore, STaVe was either able to infer or inline the other information 
it needed (methods’ control flow, initializations, etc.), or the information was provided in the annotations.
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static void main(String[] s) {
Buffer b = new Buffer();
b.els = 1;
b.cap = 7;
Consumer c1;
Consumer c2;
Producer p;

while (true) {
c1 = new Consumer(b);
c2 = new Consumer(b);
p = new Producer(b);
c1.start(); p.start(); c2.start();
c1.join(); c2.join(); p.join();
b.els = 1; b.cap = 7;

}
}

Fig. 7. Example of support for sessions.

Annotations can be understood as program invariants in the usual static analysis sense. That is, as control-point invariants 
which hold every time program execution is at a given control point (at which the annotation is placed). A program is then 
considered to be correctly annotated whenever the provided annotations hold. Although outside the scope of the present 
work, the annotations can potentially be checked, or partially generated, with existing static analysis techniques, such as [14,
4]. We shall henceforth assume that the programmer has correctly annotated the program. Furthermore, we shall assume 
the memory model of synchronized actions in a Java program to be sequentially consistent.

3.2. Synchronization correctness

The synchronization property of interest here is that “every thread synchronizing under a set of condition variables eventually 
exits the synchronization”. We work under the assumption that every such thread eventually reaches its synchronization 
block. There exist techniques [5] for checking the liveness property that a given thread eventually reaches a given control 
point; checking validity of the above assumption is therefore out of the scope of the present work.

The following definition of correct synchronization applies to a one-time synchronization of a Java program. However, the 
notion easily generalizes to programs that operate in sessions by repeatedly re-spawning the synchronizing threads (i.e., the 
one-time synchronization scheme), provided that the synchronization variables are reset at the start of each session. Fig. 7
illustrates this notion with a modified version of the main method from Example 3.

We should stress that we use the term correctness here to refer exclusively to the property mentioned above; we do not 
refer with it to other undesirable synchronization phenomena, such as data race freedom.

Definition 1 (Synchronization correctness). Let P be a Java program with a one-time synchronization, where every thread 
eventually reaches the entry point of its synchronization block. We say that P has a correct synchronization iff every thread 
eventually reaches the exit point of the block.

We now connect synchronization schemes of correctly annotated Java programs with SyncTask programs.

Theorem 1 (Characterization). A correctly annotated Java program has a correct synchronization iff its corresponding SyncTask termi-
nates.

Proof sketch. To prove the result, we define a binary relation R between the configurations of the Java program and its 
corresponding SyncTask program, and show it to be a weak bisimulation (see [15]) for a suitably chosen notion of observable 
and silent transitions between configurations. One aspect of the choice is that the annotations guarantee that the control 
flow of the original program is preserved, and thus, no infinite silent behaviours are possible within the synchronization. 
Therefore, a weak bisimulation relation is adequate and sufficient to establish the desired progress property. We refer to the 
accompanying technical report [16] for the full formalization and for the most interesting proof cases, namely the notify
and wait instructions.

The Java annotations define a bidirectional mapping between (some of) the Java program variables and ghost variables 
and the corresponding bounded variables in SyncTask. Thus, we define R to relate configurations that agree on their common
variables. Similarly, we define the set of observable transitions as the ones that update common variables, and treat all 
remaining transitions as silent. We argue that R is a weak bisimulation in the standard fashion: We establish that (i) the 
initial values of the common variables are the same for both programs, and (ii) assuming that observed variables in a Java 
program are only updated inside annotated synchronized blocks, we establish that any operation that updates a common 
variable has the same effect on it in both programs.

To prove (i) it suffices to show that the initial values in the Java program are the same as the ones provided in the ini-
tialization annotation, as described in Section 3.1. The proof of (ii) requires to show that updates to a common variable yield 
the same result in both programs. This goes by case analysis on the Java instructions set. Each case shows that for any con-
figuration pair of R , the operational rules for the given Java instruction and for the corresponding SyncTask instruction lead 
to a pair of configurations that again agree on the common variables. As the semantics of SyncTask presented in Section 2
has been designed to closely mimic the Java semantics defined in [12], the elaboration of this is straightforward. �
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Fig. 8. Top-level component and condition variables operations.

4. Verification of synchronization correctness

In this section we show how termination of SyncTask programs can be reduced to a reachability problem on Coloured
Petri Nets (CPN).

4.1. SyncTask programs as Coloured Petri Nets

Various techniques exist to prove termination of concurrent systems. For SyncTask, it is essential that such a technique 
efficiently encodes the concurrent thread interleaving, the program’s control flow, synchronization primitives, and basic data 
manipulation. Here, we have chosen to reduce the problem of termination of SyncTask programs to a reachability problem 
on hierarchical CPNs extracted from the program. CPNs are supported by analysis tools such as CPN Tools, and allow a 
natural translation of common language constructs into CPN components. For this we reuse results from Westergaard [9], 
and only had to model the constructs involving CVs that we present below. We assume some familiarity with CPNs, and 
refer the reader to [8] for a detailed exposition.

The colour set THREAD associates a colour to each Thread type declaration, and a thread is represented by a token 
with a colour from the set. Some components are parametrized by THREAD, meaning that they declare transitions, arcs, 
or places for each thread type. For illustration purposes, we present the parametrized components in an example scenario 
with three thread types: blue (B), red (R), and yellow (Y).

The production rules in Fig. 2 are mapped into hierarchical CPN components, where substitute transitions (STs; depicted as 
doubly outlined rectangles) represent the non-terminals on the right-hand side. Fig. 8a shows the component for the start 
symbol SyncTask. The Start place contains all thread tokens in the initial configuration, connected by arcs (one per colour) 
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to the STs denoting the thread types, and End, which collects the terminated thread tokens. It also contains the places that 
represent global variables.

Fig. 8b shows the modelling of wait. The transition wait cond produces two tokens: one into the place modelling 
the CV, and one into the place modelling the lock, representing its release. The other transition models a notified thread 
reacquiring the lock, and resuming the execution. Fig. 8c shows the modelling of notify. The Empty_cond transition 
is enabled if the CV is empty, and the other transitions, with one place per colour, model the non-deterministic choice of 
which thread to notify. The component for notifyAll (not shown) is similar.

The initialization in Main declares the initial set of tokens for the places representing variables, and the number and 
colours of thread tokens. A Lock creates a place containing a single token; it being empty represents that some thread 
holds the lock. The colour set CPOINT represents the control points of wait statements. A Condition variable gives 
rise to an empty place representing the waiting set, with colour set CONDITION. Here, colours are pairs of THREAD and
CPOINT. Both data are necessary to route correctly notified threads to the correct place where they resume execution.

4.2. SyncTask termination as CPN reachability

We now enunciate the result that reduces termination of a SyncTask program to a reachability problem on its corre-
sponding CPN.

Theorem 2 (SyncTask termination). A SyncTask program terminates iff its corresponding CPN unavoidably reaches a dead configuration 
in which the End place has the same marking as the Start place in the initial configuration.

Proof sketch. A CPN declares a place for each SyncTask variable. Moreover, there is a clear correspondence between the 
operational semantics of a SyncTask construct and its corresponding CPN component. It can be shown by means of weak 
bisimulation that every configuration of a SyncTask program is matched by a unique sequence of consecutive CPN con-
figurations. Therefore, if the End place in a dead configuration has the same marking as the Start place in the initial 
configuration, then every thread in the SyncTask program terminates its execution, for every possible scheduling (note that 
the non-deterministic thread scheduler is simulated by the non-deterministic firing of transitions). �

CPN termination itself can be verified algorithmically by computing the reachability graph of the generated CPN and 
checking that: (i) the graph has no cycles, and (ii) the only reachable dead configurations are the ones where the marking 
in the End place is the same as the marking in the Start place in the initial configuration.

5. The STAVE tool

In this section we present the implementation of our tool, discuss its capabilities to infer some of the information needed 
for the translation to SyncTask, and present the results of our experimental evaluation.

5.1. Implementation

We have implemented the parsing of annotated Java programs to generate SyncTask programs, and the extraction of 
hierarchical CPNs from SyncTask, as the STaVe tool. It has been written in Java, and is available at [17].

STaVe processes the annotations in an intricate scheme. It takes the annotated Java program as input, and uses the 
JavaParser library to generate the AST. Then it converts the JavaParser’s AST into the one of the OpenJDK compiler, to take 
advantage of its symbol table querying, type checking and code optimization. We have adopted JavaParser for the parsing 
because it associates the comments per-AST node, while OpenJDK’s parser discards annotations of a finer granularity than 
methods. For instance, the use of JavaParser allows the annotation of synchronized blocks. Next, STaVe traverses the 
Java AST three times to extract the SyncTask program’s AST. The first pass processes resource annotations, and extracts 
information about how threads operate on shared variables. The second pass processes synchronization annotations, and 
uses the information from the previous pass to generate the control flow structure of the threads. The third pass processes 
initialization annotations, and checks if the declared variables and thread types have been properly parsed in the previous 
steps. After the SyncTask AST is created, it is traversed following the mapping described in Section 4 to generate the 
corresponding CPN.

Two parts of STaVe turned out to be useful in itself, i.e., useful for other projects. The first is JavaParser2JCTree,3 a library 
that translates JavaParser ASTs to OpenJDK ASTs. The second is libcpntools,4 a library that generates hierarchical CPNs in the 
CPN Tools’s XML-based file format.

3 Available at https://github .com /pcgomes /javaparser2jctree.
4 Available at https://github .com /pcgomes /libcpntools.

https://github.com/pcgomes/javaparser2jctree
https://github.com/pcgomes/libcpntools
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5.2. Static analysis

Some of the information about the synchronization behaviour of the analyzed program, which is needed for the extrac-
tion of the SyncTask program, can be deduced by STaVe itself. Basically, this is the information which the Java compiler can 
deduce. Thus, the tool can automatically (the examples in parentheses refer to Fig. 6):

• deduce initialization involving constants: the number of threads, a resource capacity, etc. (lines 50–55);
• deduce simple control-flow of the synchronization blocks, including the case of method invocations without recursion;
• name a SyncTask construct from its originating Java counterpart, as for instance, an annotated synchronized block will 

be named after the Java class that defines it (class Consumer);
• assign automatically a label to variables with the same name and type, even if declared and used in distinct files and/or 

methods;
• infer information that involves the class hierarchy, as for instance, it is able to understand a “resource” that has some 

methods defined in a parent class, while other methods in the annotated class.

Our tool could be extended with several additional, specialized static analyses that would automate the inference of 
various types of information, needed for the translation to SyncTask. The main candidate would be a pointer analysis, which 
would infer when two variables in distinct parts of the code invariably point to the same object. Currently the tool requires 
the user to “tie” such variables using labels. That is, the user manually assigns a global label to a Java variable, and the 
label will become the name of the respective SyncTask variable. For instance, lines 6, 21 and 45 in Fig. 6 define that the 
Java variables named buffer, buffer and b in their respective methods, actually reference the same object m (which is a 
label to refer to that object).

5.3. Experimental evaluation

We now describe the experimental evaluation of our framework. This includes the process of annotating Java programs, 
extraction of the corresponding CPNs, and the analysis of the nets using CPN Tools.

Our first test case evaluates the usage of STaVe and the annotation process in a real-world program. For this, we 
annotated PIPE [18] (version 4.3.2), a rather large CPN analysis tool written in Java. It contains a single (and simple) syn-
chronization scheme with two threads using CVs: when there is a new connection attempt from a remote client, a thread 
establishes the connection and then notifies the shared CV; the other thread writes logs to the client, and waits on the CV if 
the socket is not ready. This test case illustrates that synchronization involving CVs is typically simple and bounded. It also 
exemplifies a session synchronization since the only variable, a boolean that flags if the socket is ready, has the same value 
(false) at the start of each session. We stress, however, that STaVe analyzes it as being a one-time synchronization. Manually 
annotating the program took just a few minutes, once the synchronization scheme was understood. The CPN extraction time 
was negligible, and the verification process took just a few milliseconds to establish correctness.

Our second test case evaluates the scalability of our approach using STaVe and state-space exploration (with CPN Tools) 
w. r. t. the number of threads. We took Example 3, and instantiated it with a varying number of threads, buffer capacity, and 
initial value.

As a reference, we used Java Pathfinder to analyze the same program. Java Pathfinder [19] (JPF) is an obvious choice for 
analyzing Java programs with wait/notify, as it can detect the same types of deadlock (lack of progress) that STaVe analyzes. 
JPF supports the full bytecode instruction set and can analyze the full state space of concurrent applications that have no 
native methods (methods that execute machine code libraries on the host system). For native methods, model classes can 
be provided to replace them with equivalent code in Java, but this is often a complex task [20].

When using STaVe, its back-end, CPN Tools, generated the state graph, which we later queried using its ML-based 
API [21]. We remark that, different from the preliminary version of this paper [22], here we take into account the time 
of a mandatory initialization phase called Enter the State Space. As expected, this leads to higher verification times. As before, 
we collect our statistics by considering the state-space generation, computation of the strongly connected components, and 
verification of the three termination conditions. Namely: whether there is at least one dead configuration; whether, for all 
dead configurations, the End place has the same marking as the Start place in the initial configuration; and whether the 
number of strongly connected components is equal to the size of the state graph, implying the absence of cycles.

The experiments were executed in a Linux machine with 16 GB of RAM and a quad-core Intel i5 CPU of 1.30 GHz. The 
JPF experiments were executed with version 8.0 rev 32, on Java 1.8.0_121. We gave JPF 4 GB of heap space (an amount 
that was never fully used) and ran the experiments without a timeout of one hour. In addition to the execution times, JPF 
shows the number of explored states and the number of executed bytecode instructions. The CPN Tools experiments were 
performed with version 4.0.1 in a Windows 7 virtual machine running under VirtualBox version 5.1.32 with 8 GB of RAM 
and 2 processors.
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Table 1
Statistics for Producer/Consumer. For given configurations, the number of program states and the analysis time is shown for both tools. For Java Pathfinder, 
we also show the number of bytecode instructions executed during the whole analysis.

Problem size Analysis results

Threads Buffer Java Pathfinder STaVe/CPN tools

producers consumers capacity elements terminates? # states # instr. time [mm:ss] # states time [mm:ss]

1 2 1 1 yes 1,466 43,603 0:01 42 0:05

1 2 2 0 no 22 3,878 0:00 43 0:05

2 2 1 0 yes 10,533 294,823 0:03 91 0:05

3 3 1 0 yes 613,052 21,035,480 2:12 283 0:05

4 3 1 0 yes 4,864,766 187,705,560 20:08 448 0:05

4 3 1 1 no 64 4,754 0:00 440 0:06

6 5 1 0 yes timeout after one hour 2,152 0:07

6 5 1 1 no 122 5,740 0:00 2,131 0:05

6 5 5 1 yes timeout after one hour 950 0:06

6 5 5 4 yes timeout after one hour 968 0:05

7 1 5 0 no 74 4,946 0:00 157 0:05

7 6 1 1 no 154 6,260 0:00 3,938 0:06

7 6 7 1 yes timeout after one hour 1,395 0:06

11 11 1 0 yes timeout after one hour 29,143 0:18

11 9 7 6 no 172 7,564 0:00 6,573 0:07

14 13 1 1 no 434 10,404 0:00 64,075 0:51

14 13 7 1 yes timeout after one hour 29,573 0:16

16 21 5 5 yes timeout after one hour 164,921 3:48

17 16 16 16 no 131 10,077 0:00 24,833 0:13

18 18 1 1 yes timeout after one hour 197,563 5:25

18 18 5 1 yes timeout after one hour 133,824 2:34

20 18 2 1 no 704 14,120 0:00 217,702 6:09

22 21 16 16 no 364 12,590 0:00 84,603 0:51

26 24 25 24 no 199 13,615 0:00 78,191 0:39

Table 1 presents the practical evaluation for a number of initial configurations with varying number of threads (Pro-
ducer and Consumer), buffer capacity and position5 (elements). Column terminates? shows if an initial program configuration 
has correct synchronization w. r. t. Definition 1. For the cases where JPF timed out, the presented results come from the
STaVe/CPN tools analysis only. As expected, the other results match and come from both analysis. The term state replaces 
CPN configuration at STaVe statistics to avoid confusion with the concept shown in Problem size, and to facilitate the compar-
ison between the state-space sizes. Times presented as 0:00 mean less than one second.

We observe an expected correlation between the number of tokens representing threads, the size of the state space, 
and the verification time. Less expected for us was the observed influence of the buffer capacities and initial states. We 
conjecture that the initial configurations which model high contention, i.e., many threads waiting on CVs, induce a larger 
state space. This effect is particularly strong with Java Pathfinder, which has to execute all relevant configurations explicitly 
as program code. The experiments also show how termination depends on the thread composition and the initial state. 
Hence, a single change in any parameter may affect the verification result.

5.4. State space explosion with Java Pathfinder

To confirm the trend of sharply exploding state spaces for unfalsifiable instances, we ran JPF with a number of additional 
configurations of Example 3.

5.4.1. Correct configurations
Table 2 shows configurations in which JPF detected no errors. We tested an initial configuration with a various num-

ber of producer and consumer threads and various buffer sizes, with one initial element. While the total state space in 
configurations of up to six threads in total is easily tractable (JPF takes between a few seconds and two minutes), larger 
configurations are problematic. Configurations with seven threads took between 15 and 20 minutes to complete, while eight 
threads could not complete within one hour.

5 As defined in https://docs .oracle .com /javase /8 /docs /api /java /nio /Buffer.html.

https://docs.oracle.com/javase/8/docs/api/java/nio/Buffer.html
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Table 2
Run times of JPF to analyze the full state space in various scenarios. The buffer was filled with one element in its initial state. We show scenarios with 
very similar outcomes by showing the range of parameters and measured results (as minimum. . . maximum values).

Threads Buffer Analysis result

prod. cons. capacity # states # instructions time [mm:ss]

1 1 1. . . 10 186. . . 230 8,112. . . 8,887 0:00. . . 0:00

1 2 1. . . 10 1,466. . . 1,608 43,597. . . 46,186 0:01. . . 0:01

2 1 2. . . 10 1,744. . . 1,844 52,638. . . 54,697 0:01. . . 0:01

2 2 1. . . 10 10,981. . . 12,449 339,300. . . 387,612 0:03. . . 0:04

2 3 1. . . 10 82,806. . . 83,396 2,714,476. . . 2,814,139 0:17. . . 0:19

3 1 3. . . 10 12,825. . . 13,045 418,015. . . 423,135 0:04. . . 0:04

3 2 2. . . 10 86,701. . . 90,241 3,082,752. . . 3,125,704 0:18. . . 0:19

3 3 1. . . 10 585,200. . . 646,643 22,420,306. . . 23,968,679 2:11. . . 2:23

3 4 1. . . 10 3,963,321. . . 4,735,873 161,745,713. . . 183,001,505 18:11. . . 21:01

4 1 4. . . 10 85,277. . . 85,753 3,119,794. . . 3,132,367 0:18. . . 0:18

4 2 3. . . 10 563,183. . . 589,886 22,484,301. . . 23,038,076 2:08. . . 2:14

4 3 2. . . 10 3,820,353. . . 4,644,356 163,788,830. . . 189,499,018 16:22. . . 19:53

4 4 1 timeout after one hour

5 1 5. . . 10 536,276. . . 537,296 21,800,221. . . 21,830,503 2:02. . . 2:02

5 2 4. . . 10 3,491,907. . . 3,600,149 153,771,259. . . 156,364,195 15:14. . . 15:24

5 3 3 timeout after one hour

Table 3
Run times of JPF to detect faults in various scenarios. The buffer was filled with one element in its initial state. We show scenarios with very similar results 
by showing the range of parameters and measured results (as minimum. . . maximum values).

Threads Buffer Analysis result

prod. cons. capacity trace length # states # instructions time [mm:ss]

1 3. . . 10 1. . . 10 25. . . 74 26. . . 75 4,078. . . 5,520 0:00

2 1 1 10 11 3,831 0:00

3 1 1. . . 2 14 15 4,020. . . 4,041 0:00

3 2 1 37 38 4,282 0:00

4 1 1. . . 3 18. . . 20 19. . . 21 4,211. . . 4,252 0:00

4 2 1. . . 2 43. . . 47 44. . . 48 4,473. . . 4,498 0:00

4 3 1 63 64 4,748 0:00

5 1 1. . . 4 22. . . 26 23. . . 27 4,402. . . 4,461 0:00

5 2 1. . . 3 49. . . 57 50. . . 58 4,664. . . 4,714 0:00

5 3 1. . . 2 69. . . 73 70. . . 74 4,939. . . 4,964 0:00

5 4 1 91 92 5,232 0:00

. . .

10 9 1 261 262 7,922 0:00

5.4.2. Faulty configurations
Table 3 shows configurations in which JPF detected a deadlock, where a producer or consumer thread could not proceed 

because the buffer was either full or empty, respectively, and no active threads that could change that condition were 
available. We tested an initial configuration with a various number of producer and consumer threads and various buffer 
sizes, with one initial element.

A larger number of threads increases the state space only slightly; this is mostly visible by a longer error trace in cases 
where more threads are involved. Still, the number of states is always small, and JPF finds the error right away, as shown 
by the very small number of instructions executed, and a run time that was always below one second (see Table 3).

Therefore, it can be seen that JPF is very effective at finding defects, and competitive with SyncTask in terms of run-time 
in cases where defects are present. For cases that are correct, JPF scales to a couple of threads, but it fails if the number of 
threads grows larger. Given that no annotations are required for JPF, it is therefore a good choice to try an example in JPF 
first, before annotating it to try to prove liveness in larger cases.
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6. Related work

We present related methods and tools that are based on the following approaches:

1. software model checking, a systematic analysis of all possible outcomes by executing the software under all schedules;
2. deductive reasoning, using compositional techniques to reason about the behaviour of concurrent programs;
3. abstract interpretation, and in particular thread-modular treatments;
4. schedule synthesis and permutation, where a safe schedule is to be found, or subsets of all thread interleavings are 

investigated;
5. and a conversion of the program structure to Petri Nets.

6.1. Approaches based on software model checking

Java Pathfinder [19] is closely related to our work in that it checks all possible outcomes of different thread interleavings 
of a concurrent Java program. By default, it checks whether any assertion failure or uncaught exception occurs, and whether 
a program exhibits a deadlock state, which is a state where at least one active thread exists that cannot continue because 
it is blocked on a resource. A thread may block on a resource because it may wait for input from a file or network channel, 
try to obtain a lock, or wait for a signal inside wait. The latter type of deadlock corresponds to the one analyzed by STaVe.

Java Pathfinder optimizes the state space search by matching equivalent program states and by ignoring interleavings 
that do not affect the global program state [19]. Unlike our tool, Java Pathfinder executes the full bytecode of the Java 
application under test, so it generally does not scale to programs with many threads. However, by executing the actual 
bytecode, it does not require annotations to check against livelocks in programs using condition variables (CVs). A drawback 
of Java Pathfinder is that it cannot execute native methods. Large applications typically need elaborate model libraries 
to execute functionality such as network communication [20], whereas STaVe only considers annotations, which can be 
modelled to take into account any complex libraries.

In principle, Java Pathfinder could handle a simplified program (equivalent to the SyncTask program) better than the full 
program, because the abstraction would eliminate native code and reduce the complexity of the program. It may be possible 
to isolate subsets of the full program by using the SyncTask annotations, but this is left as future work.

Musuvathi et al. [23] present CHESS, a tool that systematically tests thread interleaving to try to uncover subtle concur-
rency bugs. The tool supports the Windows 32 API, which features CVs. Our work shares similarities to this one, such as 
the exploration of the space of thread interleaving. However, CHESS is concerned with program safety, i.e., a program shall 
not reach an error state. The present work, on the other hand, focus on a liveness property, i.e., every waiting thread will 
eventually be notified and progress.

6.2. Approaches based on deductive reasoning

Leino et al. [4] propose a compositional technique to verify the absence of deadlocks in concurrent systems with both 
locks and channels. They use deductive reasoning to define which locks a thread may acquire, or to impose an obligation 
for a thread to send a message. The authors acknowledge that their quantitative approach to channels does not apply to 
CVs, as messages passed through a channel are received synchronously, while a notification on a condition variable is either 
received, or else is lost.

Popeea and Rybalchenko [5] present a compositional technique to prove termination of multi-threaded programs, which 
combines predicate abstraction and refinement with rely-guarantee reasoning. The technique is only defined for programs 
that synchronize with locks, and it cannot be easily generalized to support CVs. The reason for this is that the thread 
termination criterion is the absence of infinite computations; however, a finite computation where a waiting thread is never 
notified is incorrectly characterized as terminating.

6.3. Approaches based on abstract interpretation

A powerful framework for the static analysis of programs is abstract interpretation, which allows programs to be (ab-
stractly) executed in specialized abstract domains to obtain algorithmically sound facts about their behaviour. The framework 
is flexible in that it allows precision of the analyses to be traded for performance, and vice versa.

To deal with the combinatorial explosion of multi-threaded programs, some works develop thread-modular analyses to 
achieve scalability. Miné [24] for instance, considers locks (mutexes) as explicit synchronization primitives, and includes 
a yield statement. The locks are not reentrant: acquiring an already acquired lock has no effect, and similarly releasing a 
lock that is not acquired by a thread. No procedures are considered (but inlining can be used for non-recursive procedural 
programs), and no dynamic thread creation. The aim of the proposed method is to discover data races.

In recent follow-up work, Monat and Miné [25] extend the analysis to relational domains, in a flow-sensitive manner, 
to achieve a higher precision. The focus of the work is on numeric properties of small, but intricate mutual exclusion 
algorithms. The experimental results show that the method scales well, and allows the analysis of several hundreds of 
(small) threads.



188 P. de C. Gomes et al. / Science of Computer Programming 163 (2018) 174–189
Other works also use a thread-modular analysis to detect potentially unsafe accesses. High-level data races denote unsafe 
access patterns to tuples of values [26]. Local atomicity violations denote unsafe uses of shared data [27,28]. Both types of 
atomicity violations have recently been unified [29]. Atomicity violations show that the value of a CV may not always be 
correct w. r. t. the global state of the program.

Another analysis that is close to ours is a data race detection tool based on key concurrency operations extracted from 
the given program [30]. Similarly to our tool, that approach builds an abstract model that contains all relevant concurrency 
operations on shared data. Like STaVe’s analysis, theirs is not completely thread-modular.

As already mentioned, one strong point of the above-mentioned methods is that most of them are thread-modular. The 
mutual dependencies are handled by data-flow analysis or rely-guarantee style reasoning, which means that an iterative 
fixed-point computation is performed that invokes the thread-modular analyses on the threads in rounds, until global 
stabilization.

However, data race and atomicity analyses do not cover the signalling between threads, and therefore do not completely 
cover the semantics of CVs. Since wait-notify synchronization is inherently non-local, it does not lend itself naturally to 
completely thread-modular analyses. Furthermore, it is not obvious how the analysis has to be set up to compute the 
interferences (as the local effects are called) in the case of CVs, and how precise this can be made.

6.4. Schedule synthesis and permutation

Raychev et al. [7] present an algorithm that takes as input a non-deterministic parallel program, and synthesizes a syn-
chronization specification using CVs (and other synchronization primitives) so that the program becomes deterministic, in 
the sense that it produces the same output for the same input, regardless of the scheduling. This work differs substantially 
from ours since we do not focus on deterministic programs (in the above sense), and we extract a synchronization specifica-
tion rather than create one. However, the two works share similarities. For instance, both focus on programs with constant 
number of threads due to the complexity of reasoning about the asynchronous signalling of CVs. Also, they abstract away 
from other sources of non-determinism than thread interleaving.

Wang and Hoang [31] propose a technique that permutes actions of execution traces to verify the absence of syn-
chronization bugs. Their program model considers locks and condition variables. However, they cannot verify the property 
considered here, since their method does not permute matching pairs of wait-notify. For instance, it will not reorder a trace 
where, first, a thread waits, and then, another thread notifies. Thus, their method cannot detect the case where the notifying 
thread is scheduled first, and the waiting thread suspends the execution indefinitely.

6.5. Conversion to Petri Nets

Kaiser and Pradat-Peyre [32] propose the modelling of Java monitors in Ada, and the extraction of CPNs from Ada 
programs. However, they do not precisely describe how the CPNs are verified, nor provide a correctness argument about 
their technique. Also, they only validate their tool on toy examples with few threads. Our tool is validated on larger test 
cases, and on a real program.

Kavi et al. [33] present PN components for the synchronization primitives in the Pthread library for C/C++, including 
condition variables. However, their modelling of CVs just allows the synchronization between two threads, and no argument 
is presented on how to use it with more threads.

Westergaard [9] presents a technique to extract CPNs for programs in a toy concurrent language, with locks as the only 
synchronization primitive. Our work borrows much from this work w. r. t. the CPN modelling and analysis. However, we 
analyze full-fledged programming languages, and address the complications of analyzing programs with condition variables.

Finally, Van der Aalst et al. [34] present strategies for modelling complex parallel applications as CPNs. We borrow many 
ideas from this work, especially the modelling of hierarchical CPNs. However, their formalism is over-complicated for our 
needs, and we therefore simplify it to produce more manageable CPNs.

7. Conclusion

We present a technique to prove the correct synchronization of Java programs using condition variables. Correctness 
here means that if all threads reach their synchronization blocks, then all will eventually terminate the synchronization. 
Our technique does not avoid the exponential blow-up of the state space caused by the interleaving of threads; instead, it 
alleviates the problem by isolating the synchronization behaviour.

We introduce SyncTask, a simple language to capture the relevant aspects of synchronization using condition variables. 
Also, we define an annotation scheme for programmers to map the expected synchronization in a Java program to a Sync-
Task program. We establish that the synchronization is correct w. r. t. the above-mentioned property iff the corresponding 
SyncTask terminates. As a proof-of-concept, to check termination we define a translation from SyncTask programs into 
Coloured Petri Nets such that the program terminates iff the net invariably reaches a special configuration. The extraction 
of SyncTask from annotated Java programs, and the translation to CPNs, is implemented as the STaVe tool. We validate our 
technique on some test-cases using CPN Tools. Experiments show that our approach scales well to programs with many 
threads, at the expense of requiring detailed annotations of the original Java program.
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Our current results hold for a number of restrictions on the analyzed programs. In future work we plan to address and 
relax these restrictions, integrate special-purpose static analyzers for the separate types of required annotations, incorporate 
more sophisticated model checkers for checking termination of SyncTask programs, and perform a more diverse experimen-
tal evaluation and comparison with other verification techniques.
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