Skip to main content

Solving Chance-Constrained Games Using Complementarity Problems

  • Conference paper
  • First Online:
Book cover Operations Research and Enterprise Systems (ICORES 2016)

Abstract

In this paper, we formulate the random bimatrix game as a chance-constrained game using chance constraint. We show that a Nash equilibrium problem, corresponding to independent normally distributed payoffs, is equivalent to a nonlinear complementarity problem. Further if the payoffs are also identically distributed, a strategy pair where each player’s strategy is the uniform distribution over his action set, is a Nash equilibrium. We show that a Nash equilibrium problem corresponding to independent Cauchy distributed payoffs, is equivalent to a linear complementarity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming Theory and Algorithms, 3rd edn. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  2. Blau, R.A.: Random-payoff two person zero-sum games. Oper. Res. 22(6), 1243–1251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassidy, R.G., Field, C.A., Kirby, M.J.L.: Solution of a satisficing model for random payoff games. Manage. Sci. 19(3), 266–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11(1), 18–39 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charnes, A., Kirby, M.J.L., Raike, W.M.: Zero-zero chance-constrained games. Theory Probab. Appl. 13(4), 628–646 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, J., Lisser, A.: A second-order cone programming approach for linear programs with joint probabilistic constraints. Oper. Res. Lett. 40(5), 325–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Collins, W.D., Hu, C.: Studying interval valued matrix games with fuzzy logic. Soft. Comput. 12, 147–155 (2008)

    Article  MATH  Google Scholar 

  8. Couchman, P., Kouvaritakis, B., Cannon, M., Prashad, F.: Gaming strategy for electric power with random demand. IEEE Trans. Power Syst. 20(3), 1283–1292 (2005)

    Article  Google Scholar 

  9. DeMiguel, V., Xu, H.: A stochastic multiple leader stackelberg model: analysis, computation, and application. Oper. Res. 57(5), 1220–1235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D.-F., Nan, J.-X., Zhang, M.J.: Interval programming models for matrix games with interval payoffs. Optim. Meth. Softw. 27(1), 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferris, M.C., Munson, T.S.: Complementarity problems in GAMS and the PATH solver. J. Econ. Dyn. Control 24, 165–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jadamba, B., Raciti, F.: Variational inequality approach to stochastic Nash equilibrium problems with an application to cournot oligopoly. J. Optim. Theor. Appl. 165(3), 1050–1070 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1, 2nd edn. Wiley, New York (1994)

    MATH  Google Scholar 

  14. Katzwer, R.: Lemke-Howson Algorithm for 2-Player Games (2013). File ID: #44279 Version: 1.3

    Google Scholar 

  15. Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manage. Sci. 11(7), 681–689 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lemke, C., Howson, J.: Equilibrium points of bimatrix games. SIAM J. 12, 413–423 (1964)

    MathSciNet  MATH  Google Scholar 

  17. Li, D.F.: Linear programming approach to solve interval-valued matrix games. J. Omega 39(6), 655–666 (2011)

    Article  Google Scholar 

  18. Mazadi, M., Rosehart, W.D., Zareipour, H., Malik, O.P., Oloomi, M.: Impact of wind integration on electricity markets: a chance-constrained Nash Cournot model. Int. Trans. Electr. Energy Syst. 23(1), 83–96 (2013)

    Article  Google Scholar 

  19. Mitchell, C., Hu, C., Chen, B., Nooner, M., Young, P.: A computational study of interval-valued matrix games. In: International Conference on Computational Science and Computational Intelligence (2014)

    Google Scholar 

  20. Munson, T.S.: Algorithms and environments for complementarity. Ph.D. thesis, University of Wisconsin, Madison (2000)

    Google Scholar 

  21. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neumann, J.V.: Zur theorie der gesellschaftsspiele. Math. Annalen 100(1), 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  24. Prékopa, A.: Stochastic Programming. Springer, Netherlands (1995)

    Book  MATH  Google Scholar 

  25. Ravat, U., Shanbhag, U.V.: On The characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21(3), 1168–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmelzer, S.: COMPASS: a free solver for mixed complementarity problems. Master’s thesis, Universität Wien (2012)

    Google Scholar 

  27. Singh, V.V., Jouini, O., Lisser, A.: Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44(5), 640–644 (2016)

    Article  MathSciNet  Google Scholar 

  28. Singh, V.V., Jouini, O., Lisser, A.: Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium. Optim. Lett. (2016). doi:10.1007/s11590-016-1077-6

  29. Song, T.: On random payoff matrix games. In: Phillips, F.Y., Rousseau, J.J. (eds.) Systems and Management Science by Extremal Methods, pp. 291–308. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  30. Valenzuela, J., Mazumdar, M.: Cournot prices considering generator availability and demand uncertainty. IEEE Trans. Power Syst. 22(1), 116–125 (2007)

    Article  Google Scholar 

  31. Wolf, D.D., Smeers, Y.: A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Manage. Sci. 43(2), 190–197 (1997)

    Article  MATH  Google Scholar 

  32. Xu, H., Zhang, D.: Stochastic Nash equilibrium problems: sample average approximation and applications. Comput. Optim. Appl. 55(3), 597–645 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Fondation DIGITEO, SUN grant No. 2014-0822D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Vikram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Singh, V.V., Jouini, O., Lisser, A. (2017). Solving Chance-Constrained Games Using Complementarity Problems. In: Vitoriano, B., Parlier, G. (eds) Operations Research and Enterprise Systems. ICORES 2016. Communications in Computer and Information Science, vol 695. Springer, Cham. https://doi.org/10.1007/978-3-319-53982-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53982-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53981-2

  • Online ISBN: 978-3-319-53982-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics