Skip to main content

Distributed Patrolling with Two-Speed Robots (and an Application to Transportation)

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 695))

Abstract

We initiate the study of patrolling a unit interval with primitive two-speed, autonomous robots, i.e. robots without memory, no communication capabilities and no computation power. Robots have only two moving-states, one for patrolling and one for walking, each associated with a direction and speed. The robots are moving perpetually, and their moving-states and moving directions change only when they collide. Such a dynamic system induces the so-called idleness for patrolling a unit interval, i.e. the smallest time interval within which every point of the domain is patrolled by some robot. Our main technical contribution is an analytic study of the induced dynamic system of robots, which allows us to decide efficiently whether or not the system converges to a stable configuration that is also shown to be optimal.

As a warm-up for our main result, we show how robots can be centrally coordinated, carefully choosing initial locations, so that the induced idleness is optimal. Our main result pertaining to the idleness of primitive robots follows by a technical analysis of their collision locations, which we show, under some conditions, converge to the optimal initial locations for non-distributed robots.

Our result finds an application to a transportation problem concerning Scheduling with Regular Delivery. In this optimization problem, an infinite quantity of a commodity, residing at an endpoint of an interval, needs to be transported to the other endpoint. To that end, we show that the already established patrolling schedules of an interval correspond to optimal strategies that guarantee that the flow of the commodity is the largest possible.

J. Czyzowicz and E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agmon, N., Hazon, N., Kaminka, G.A.: The giving tree: constructing trees for efficient offline and online multi-robot coverage. Ann. Math. Artif. Intell. 52(2–4), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339–2345 (2008)

    Google Scholar 

  3. Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V., Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28645-5_48

    Chapter  Google Scholar 

  4. Alpern, S., Morton, A., Papadaki, K.: Optimizing randomized patrols. Operational Research Group, London School of Economics and Political Science (2009)

    Google Scholar 

  5. Alpern, S., Morton, A., Papadaki, K.: Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amigoni, F., Basilico, N., Gatti, N., Saporiti, A., Troiani, S.: Moving game theoretical patrolling strategies from theory to practice: an USARSim simulation. In: ICRA, pp. 426–431 (2010)

    Google Scholar 

  7. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  MATH  Google Scholar 

  8. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

    Article  MATH  Google Scholar 

  9. Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04355-0_44

    Chapter  Google Scholar 

  10. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile agents. In: Proceeding of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 305–314. ACM (2010)

    Google Scholar 

  11. Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznański, P.: Limit behavior of the multi-agent rotor-router system. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 123–139. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5_9

    Chapter  Google Scholar 

  12. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)

    Google Scholar 

  13. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Morales Ponce, O.: Optimal patrolling of fragmented boundaries. In: SPAA (2013)

    Google Scholar 

  15. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  16. Czyzowicz, J., Kranakis, E., Pacheco, E.: Localization for a system of colliding robots. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 508–519. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2_45

    Google Scholar 

  17. Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time of parallel rotor walks. In: STACS 2014, pp. 263–275 (2014)

    Google Scholar 

  18. Dijkstra, E.W.: Selected Writings on Computing: A Personal Perspective. Springer, New York (1982)

    Book  MATH  Google Scholar 

  19. Dumitrescu, A., Ghosh, A., Csaba, D.T.: On fence patrolling by mobile agents. CoRR, abs/1401.6070 (2014)

    Google Scholar 

  20. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, vol. 1, pp. 63–70 (2008)

    Google Scholar 

  22. Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: Dorigo, M., Birattari, M., Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 119–130. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15461-4_11

    Chapter  Google Scholar 

  23. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. In: ICRA, pp. 1927–1933 (2001)

    Google Scholar 

  24. Hare, J., Gupta, S., Wilson, J.: Decentralized smart sensor scheduling for multiple target tracking for border surveillance. In: ICRA, pp. 3265–3270. IEEE (2015)

    Google Scholar 

  25. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robotics Auton. Syst. 56(12), 1102–1114 (2008)

    Article  Google Scholar 

  26. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35261-4_62

    Chapter  Google Scholar 

  27. Kosowski, A., Pająk, D.: Does adding more agents make a difference? A case study of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 544–555. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_46

    Google Scholar 

  28. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Simão Sichman, J., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003). doi:10.1007/3-540-36483-8_11

    Chapter  Google Scholar 

  29. Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable. Mathematical Surveys, vol. 3. AMS (1949)

    Google Scholar 

  30. Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: Behavioral control for multi-robot perimeter patrol: a finite state automata approach. In: ICRA, pp. 831–836 (2009)

    Google Scholar 

  31. Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: CDC, pp. 7153–7158 (2010)

    Google Scholar 

  32. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Czyzowicz, J., Georgiou, K., Kranakis, E., MacQuarrie, F., Pajak, D. (2017). Distributed Patrolling with Two-Speed Robots (and an Application to Transportation). In: Vitoriano, B., Parlier, G. (eds) Operations Research and Enterprise Systems. ICORES 2016. Communications in Computer and Information Science, vol 695. Springer, Cham. https://doi.org/10.1007/978-3-319-53982-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53982-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53981-2

  • Online ISBN: 978-3-319-53982-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics