Skip to main content

The PLC Implementation of Fractional-Order Operator Using CFE Approximation

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Abstract

In the paper an implementation of an elementary fractional order, integro-differential operator at PLC platform is discussed. The considered element is approximated with the use of discrete CFE approximation. The operator we deal with is a crucial part of fractional order PID controller. Guidelines to PLC implementation with the use of object-oriented approach presented by IEC 61131.3 standard are given also. As an example the implementation at SIEMENS SIMATIC S7 1200 platform is presented. As a reference the analytical response of element was applied, the quality of model was estimated with use of typical MSE cost function. Results of experiments show, that the PLC implementation of the fractional order element is possible to make with the use of object-oriented approach and the accuracy of approximation is determined by its order.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al Aloui, M.A.: Discretization methods of fractional parallel PID controllers. In: Proceedings of 6th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2009, pp. 327–330 (2009)

    Google Scholar 

  2. Berger, H.: Automating with STEP 7 in STL and SCL: SIMATIC S7–300/400 Programmable Controllers, SIEMENS 2012 (2012)

    Google Scholar 

  3. Berger, H.: Automating with SIMATIC: Controllers, Software, Programming, Data, SIEMENS 2013 (2013)

    Google Scholar 

  4. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems. Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing, New Jersey (2010)

    Google Scholar 

  5. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  6. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Das, S., Pan, I.: Intelligent Fractional Order Systems and Control. An Introduction. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  8. Douambi, A., Charef, A., Besancon, A.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function Int. J. Appl. Math. Comp. Sci. 17(4), 455–462 (2007)

    MATH  Google Scholar 

  9. Dzieliski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  10. Frey, G., Litz, L.: Formal methods in PLC programming. In: Proceedings of the IEEE Conference on Systems Man and Cybrenetics, SMC 2000, Nashville, 8–11 October 2000, pp. 2431–2436 (2000)

    Google Scholar 

  11. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation Systems. Concepts and Programming Languages, Requirements for Programming Systems, Decision Making Aids. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  12. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  13. Kaczorek, T., Rogowski, K.: Fractional linear systems and electrical circuits. Bialystok University of Technology, Bialystok (2014)

    Google Scholar 

  14. Lewis, R.W.: Programming industrial control systems using IEC 1131–3 IEE (1998)

    Google Scholar 

  15. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(2010), 823–831 (2010)

    Article  Google Scholar 

  16. Mitkowski, W., Oprzedkiewicz, K.: Optimal sample time estimation for the finite-dimensional discrete dynamic compensator implemented at the soft PLC platform. In: Korytowski, A., Mitkowski, W., Szymkat, M. (eds.) 23rd IFIP TC 7 Conference on System Modelling and Optimization: Book of Abstracts, Cracow, Poland, 23–27 July 2007, AGH University of Science and Technology. Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Krakow, pp. 77–78 (2007). ISBN 978-83-88309-0

    Google Scholar 

  17. Mitkowski, W., Oprzedkiewicz, K.: Fractional-order \(P2D^\beta \) controller for uncertain parameter DC motor. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Theory & Appl. of Non-integer Order Syst. LNEE, vol. 257, pp. 249–259. Springer, Heidelberg (2013). doi:10.1007/978-3-319-00933-9_23. ISSN 1876–1100, ISBN: 978-3-319-00932-2; e-ISBN: 978-3-319-00933-9

    Chapter  Google Scholar 

  18. Oprzedkiewicz, K., Chochol, M., Bauer, W., Meresinski, T.: Modeling of elementary fractional order plants at PLC SIEMENS platform. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems. LNEE, vol. 320, pp. 265–273. Springer, Cham (2015). doi:10.1007/978-3-319-09900-2_25. ISSN 1876-1100

    Google Scholar 

  19. Ostalczyk, P.: Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22(3), 533–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ostalczyk, P.: Discrete Fractional Calculus. Applications in Control and Image Processing. Series in Computer Vision, vol. 4. World Scientific Publishing, Singapore (2016)

    MATH  Google Scholar 

  21. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21, 69–81 (2011)

    Article  MATH  Google Scholar 

  22. Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)

    Google Scholar 

  23. Petras, I.: Realization of fractional order controller based on PLC and its utilization to temperature control, Transfer inovci 14 (2009)

    Google Scholar 

  24. Petras, I.: Tuning and implementation methods for fractional-order controllers. Fractional Calc. Appl. Anal. 15(2), 282–303 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Petras, I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod1.m

  26. Petras, I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod2.m

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  28. Sierociuk, D., Macias, M.: New recursive approximation of fractional order derivative and its application to control. In: Proceedings of 17th International Carpathian Control Conference (ICCC), pp. 673–678 (2016)

    Google Scholar 

  29. Stanislawski, R., Latawiec, K.J., Lukaniszyn, M.: A comparative analysis of laguerre-based approximators to the grnwald-letnikov fractional-order difference. Math. Probl. Eng 2015, article ID 512104, 10 p. (2015). http://dx.doi.org/10.1155/2015/512104

  30. Valerio, D., da Costa, J.S.: Tuning of fractional PID controllers with Ziegler-Nichols-type rules. Sig. Process. 86, 2771–2784 (2006)

    Article  MATH  Google Scholar 

  31. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fractional Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340, 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The paper was sponsored by AGH University grant no 11.11.120.817.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzedkiewcz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oprzedkiewcz, K., Mitkowski, W., Gawin, E. (2017). The PLC Implementation of Fractional-Order Operator Using CFE Approximation. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics