Skip to main content

Experimental Research of Electrochemical Energy Storage

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Abstract

The paper presents experimental research involving VRLA (Valve Regulated Lead Acid) AGM (Absorbed Glass Mat) batteries. Test-bench research was conducted in the conditions of constant load current. The paper presents the temperature increase on the battery’s terminals and body accompanying battery discharge in the conditions of a preset ambient temperature. The paper also presents the influence that various discharge current values had on growth of the temperature recorded on the battery’s terminals as well as the change of voltage on the battery’s terminals. Furthermore, the paper includes examination of the influence that changes of ambient temperature have on change of a battery’s useful capacity. The influence of the changes of ambient temperature was examined in a climatic chamber. Change of the battery’s internal resistance and the electromotive force, depending on the level of battery charging, are also presented. The analyses were conducted for a typical operating range of a electrochemical battery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chmielewski, A., Gumiński, R., Mączak, J., Radkowski, S., Szulim, P.: Aspects of balanced development of RES and distributed micro cogeneration use in Poland: case study of a µCHP with Stirling engine. Renew. Sustain. Energy Rev. 60, 930–952 (2016). Elsevier

    Article  Google Scholar 

  2. Directive 2012/27/EU of the European Parliment and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC

    Google Scholar 

  3. Chmielewski, A., Gumiński, R., Radkowski, S., Szulim, P.: Experimental research and application possibilities of microcogeneration system with Stirling engine. J. Power Technol. 95(5), 14–22 (2015)

    Google Scholar 

  4. Directive 2009/72/EC of the European Parliment and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC

    Google Scholar 

  5. Chmielewski, A., Gumiński, R., Mączak, J., Szulim, P.: Model-based research on a micro cogeneration system with Stirling engine. J. Power Technol. 96(4), 295–305 (2016)

    Google Scholar 

  6. Chmielewski, A., Gumiński, R., Radkowski, S., Szulim, P.: Aspekty wsparcia i rozwoju mikrokogeneracji rozproszonej na terenie Polski. Rynek Energii 114(5), 94–101 (2014). (in Polish)

    Google Scholar 

  7. Chmielewski, A., Gumiński, R., Mączak, J.: Selected properties of the dynamic model of the piston-crankshaft assembly in Stirling engine combined with the thermodynamic submodel. Int. J. Struct. Stab. Dyn. (2017, in print)

    Google Scholar 

  8. Chmielewski, A., Gumiński, R., Radkowski, S.: Chosen properties of a dynamic model of crankshaft assembly with three degrees of freedom. In: 20th International Conference on Methods and Models in Automation and Robotics (MMAR 2015), pp. 1038–1043. IEEE (2015)

    Google Scholar 

  9. Chmielewski, A., Gontarz, S., Gumiński, R., Mączak, J., Szulim, P.: Research on a micro cogeneration system with an automatic load-applying entity. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 387–395. Springer, Cham (2016)

    Google Scholar 

  10. Chmielewski, A., Gontarz, S., Gumiński, R., Mączak, J., Szulim, P.: Research study of the micro cogeneration system with automatic loading unit. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 375–386. Springer, Cham (2016)

    Google Scholar 

  11. Chmielewski, A., Gumiński, R., Mączak, J.: Selected properties of the adiabatic model of the stirling engine combined with the model of the piston-crankshaft system. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, Aug 29–SEP 1, pp. 543–548. IEEE (2016)

    Google Scholar 

  12. Chmielewski, A., Gumiński, R., Mączak, J.: Dynamic model of a free-piston stirling engine with four degrees of freedom combined with the thermodynamic submodel. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, AUG 29–SEP 1, pp. 583–588. IEEE (2016)

    Google Scholar 

  13. Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  14. Kularatna, N.: Energy Storage Devices - A General Overview. Energy Storage Devices for Electronic Systems. Elsevier, pp. 1–28 (2015)

    Google Scholar 

  15. Chia, Y.Y., Lee, L.H., Shafiabady, N., Isa, D.: A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Appl. Energy 137, 588–602 (2015)

    Article  Google Scholar 

  16. Kim, J.D., Rahimi, M.: Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: impacts on greenhouse gas (GHG) emissions. Energy Policy 73, 620–630 (2014)

    Article  Google Scholar 

  17. Sekrecki, M., Krawczyk, P., Kopczyński, A.: Nieliniowy model symulacyjny akumulatora Li-jon do obliczeń napędów pojazdów elektrycznych. Logistyka, nr 6, 9332–9425 (2014). (in Polish)

    Google Scholar 

  18. Szumanowski, A.: Akumulacja energii w pojazdach, wyd. WKŁ, Warszawa (1984). (in Polish)

    Google Scholar 

  19. Szumanowski, A.: Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation. IGI Global Disseminator of knowledge (2013)

    Google Scholar 

  20. Szumanowski, A.: Hybrid Electric Vehicle Drives Design - Edition Based On Urban Buses. Monographbook, ITE, Warszawa (2006)

    Google Scholar 

  21. Szumanowski, A., Chang, Y., Piórkowski, P.: Method of Battery Adjustment for Hybrid Drive by modeling and simulation, pp. 681–687. IEEE (2005)

    Google Scholar 

  22. Szumanowski, A., Chang, Y., Piórkowski, P.: Batteries and ultracapacitors set in hybrid propolusion system. In: POWERENG 2007, April 12–14, 2007, Portugal, pp. 122–127. IEEE (2007)

    Google Scholar 

  23. Szumanowski, A., Chang, Y.: Battery management system based on battery nonlinear dynamics modeling. IEEE Trans. Veh. Technol. 57(3), 1425–1432 (2008)

    Article  Google Scholar 

  24. Bizon, N.: Load-following mode control of a standalone renewable/fuel cell hybrid power source. Energy Convers. Manag. 77, 763–772 (2014)

    Article  Google Scholar 

  25. Bizon, N., Oproescu, M., Raceanu, M.: Efficient energy control strategies for a standalone renewable/fuel cell hybrid power source. Energy Convers. Manag. 90, 93–110 (2015)

    Article  Google Scholar 

  26. Milewski, J., Wołowicz, M., Bernat, R., Szabłowski, Ł., Lewandowski, J.: Variant analysis of the structure and parameters of SOFC hybrid systems. Appl. Mech. Mater. 437, 306–312 (2013). doi:10.4028/www.scientific.net/AMM.437.306

    Article  Google Scholar 

  27. Milewski, J., Wołowicz, M., Szabłowski, Ł., Kuta, J.: Control strategy for a solid oxide fuel cell fuelled by natural gas operating in distributed generation. Energy Procedia 29, 676–682 (2012)

    Article  Google Scholar 

  28. Chmielewski, A., Radkowski, S.: Modelowanie procesu ładowania akumulatora elektrochemicznego pracującego w układzie kogeneracyjnym. Zeszyty Naukowe Instytutu Pojazdów - Proceedings of the Institute of Vehicles 2(98), 83–89 (2014)

    Google Scholar 

  29. Chmielewski, A., Gontarz, S., Szulim, P.: Modelowo-wsparte badania elektrochemicznych magazynów energii. Rynek Energii 126(5), 37–45 (2016)

    Google Scholar 

  30. Chmielewski, A., Szurgott, P.: Modelling and simulation of repeated charging/discharging cycles for selected Nickel-Cadmium batteries. J. Kones 22(1), 55–62 (2015)

    Google Scholar 

  31. Lai, Y., Du, S., Ai, L., Ai, L., Cheng, Y., Tang, Y., Jia, M.: Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates. Int. J. Hydrogen Energy 40, 13039–13049 (2015)

    Article  Google Scholar 

  32. Li, J., Cheng, Y., Jia, M., Tang, Y., Lin, Y., Zhian, Z., Liu, Y.: An electrochemical-thermal model based on dynamic responses for lithium iron phosphate battery. J. Power Sources 255, 130–143 (2014)

    Article  Google Scholar 

  33. Saito, Y., Shikano, M., Kobayashi, H.: Heat generation behavior during charging and discharging of lithium-ion batteries after long-time storage. J. Power Sources 244, 294–299 (2013)

    Article  Google Scholar 

  34. Saw, L.H., Ye, Y., Tay, A.A.O.: Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling. Energy Convers. Manag. 87, 367–377 (2014)

    Article  Google Scholar 

  35. Wang, Q., Sun, Q., Ping, P., Zhao, X., Sun, J., Lin, Z.: Heat transfer in the dynamic cycling of lithium–titanate batteries. Int. J. Heat Mass Transf. 93, 896–905 (2016)

    Article  Google Scholar 

  36. Chmielewski, A., Gontarz, S., Gumiński, R., Mączak, J., Szulim, P.: Badania elektrochemicznych magazynów energii (Research on electrochemical energy stores). Przegląd Elektrotechniczny 10, 231–234 (2016)

    Google Scholar 

  37. Czerwiński, A.: Akumulatory, baterie, ogniwa. WKŁ (2012)

    Google Scholar 

  38. Gontarz, S., Szulim, P.: Evaluation of the impact of environmental hazards associated with mechanical faults in BLDC electric motors. Environ. Eng. Manag. J. 15, 491–504 (2016)

    Google Scholar 

  39. Chmielewski, A., Mączak, J., Szulim, P.: Experimental research and simulation model of electrochemical energy stores. AISC. Springer (2017, in print)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chmielewski, A., Mączak, J., Szulim, P. (2017). Experimental Research of Electrochemical Energy Storage. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics