Skip to main content

Experimental Research and Simulation Model of Electrochemical Energy Stores

  • Conference paper
  • First Online:
Automation 2017 (ICA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Included in the following conference series:

Abstract

The first part of the paper presents the results of experimental research involving VRLA (Valve Regulated Lead Acid) AGM (Absorbed Glass Mat) batteries, the lithium-ion batteries and lithium iron phosphate (LiFePO4) batteries. The experimental research was conducted in a static cycle (with constant load current). The paper presents the temperature increase on the battery’s terminals and body. The influence that various values of discharge current have on growth of temperature and change of voltage on the battery’s terminals is also presented. The second part of the paper contains the analytical relations which have been used for building the simulation model in the MATLAB&Simulink environment. The results obtained on the basis of the model have been validated against the results of experimental research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EUCO 169/14 - Conclusions - 23/24 October 2014 http://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf. Accessed 10 Nov 2016

  2. Chmielewski, A., Gumiński, R., Mączak, J., Radkowski, S., Szulim, P.: Aspects of balanced development of RES and distributed micro cogeneration use in Poland: case study of a µCHP with stirling engine. Renew. Sustain. Energy Rev. 60, 930–952 (2016). Elsevier

    Article  Google Scholar 

  3. Chmielewski, A., Gumiński, R., Radkowski, S., Szulim, P.: Experimental research and application possibilities of microcogeneration system with Stirling engine. J. Power Technol. 95(5), 14–22 (2015)

    Google Scholar 

  4. Chmielewski, A., Gumiński, R., Mączak, J., Szulim, P.: Model-based research on a micro cogeneration system with stirling engine. J. Power Technol. 96(4), 295–305 (2016)

    Google Scholar 

  5. Bizon, N.: Load-following mode control of a standalone renewable/fuel cell hybrid power source. Energy Convers. Manag. 77, 763–772 (2014)

    Article  Google Scholar 

  6. Bizon, N., Oproescu, M., Raceanu, M.: Efficient energy control strategies for a standalone renewable/fuel cell hybrid power source. Energy Convers. Manag. 90, 93–110 (2015)

    Article  Google Scholar 

  7. Milewski, J., Wołowicz, M., Szabłowski, Ł., Kuta, J.: Control strategy for a solid oxide fuel cell fuelled by natural gas operating in distributed generation. Energy Proced. 29, 676–682 (2012)

    Article  Google Scholar 

  8. Chmielewski, A., Gumiński, R., Radkowski, S., Szulim, P.: Aspekty wsparcia i rozwoju mikrokogeneracji rozproszonej na terenie Polski. Rynek Energii 114(5), 94–101 (2014)

    Google Scholar 

  9. Chmielewski, A., Gumiński, R., Mączak, J.: Selected properties of the dynamic model of the piston-crankshaft assembly in stirling engine combined with the thermodynamic submodel. Int. J. Struct. Stab. Dyn. (2017, in print)

    Google Scholar 

  10. Chmielewski, A., Gumiński, R., Radkowski, S.: Chosen properties of a dynamic model of crankshaft assembly with three degrees of freedom. In: 20th International Conference on Methods and Models in Automation and Robotics (MMAR 2015), pp. 1038–1043. IEEE (2015)

    Google Scholar 

  11. Chmielewski, A., Gontarz, S., Gumiński, R., Mączak, J., Szulim, P.: Research on a micro cogeneration system with an automatic load-applying entity. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, vol. 440, pp. 387–395. Springer, Cham (2016)

    Chapter  Google Scholar 

  12. Chmielewski, A., Gontarz, S., Gumiński, R., Mączak, J., Szulim, P.: Research study of the micro cogeneration system with automatic loading unit. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, vol. 440, pp. 375–386. Springer, Cham (2016)

    Chapter  Google Scholar 

  13. Chmielewski, A., Gumiński, R., Mączak, J.: Selected properties of the adiabatic model of the stirling engine combined with the model of the piston-crankshaft system. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September, pp. 543–548. IEEE (2016)

    Google Scholar 

  14. Chmielewski, A., Gumiński, R., Mączak, J.: Dynamic model of a free-piston stirling engine with four degrees of freedom combined with the thermodynamic submodel. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September, pp. 583–588. IEEE (2016)

    Google Scholar 

  15. Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  16. Kularatna, N.: Energy storage devices - a general overview. In: Energy Storage Devices for Electronic Systems, pp. 1–28. Elsevier (2015)

    Google Scholar 

  17. Chen, H., Cong, N., Yang, W., Tan, C., Li, Y., Ding, Y.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)

    Article  Google Scholar 

  18. Chmielewski, A., Radkowski, S.: Prosumer on the energy market: case study. Zeszyty Naukowe Instytutu Pojazdów – Proc. Inst. Veh. 102(2), 23–29 (2015)

    Google Scholar 

  19. Kim, J.D., Rahimi, M.: Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: impacts on greenhouse gas (GHG) emissions. Energy Policy 73, 620–630 (2014)

    Article  Google Scholar 

  20. Sekrecki, M., Krawczyk, P., Kopczyński, A.: Nieliniowy model symulacyjny akumulatora Li-jon do obliczeń napędów pojazdów elektrycznych. Logistyka 6, 9332–9425 (2014). in Polish

    Google Scholar 

  21. Szumanowski, A.: Akumulacja energii w pojazdach, wyd. WKŁ, Warszawa (1984)

    Google Scholar 

  22. Szumanowski, A.: Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation. IGI Global Disseminator of knowledge, Hershey (2013)

    Book  Google Scholar 

  23. Szumanowski, A.: Hybrid Electric Vehicle Drives Design - Edition Based on Urban Buses. Monographbook, ITE, Warszawa (2006)

    Google Scholar 

  24. Szumanowski A., Chang Y., Piórkowski P.: Method of battery adjustment for hybrid drive by modeling and simulation, pp. 681–687. IEEE (2005)

    Google Scholar 

  25. Szumanowski, A., Chang, Y.: Battery management system based on battery nonlinear dynamics modeling. IEEE Trans. Veh. Technol. 57(3), 1425–1432 (2008)

    Article  Google Scholar 

  26. Polskie Sieci Elektroenergetyczne <Polish Power System> http://www.pse.pl/. Accessed 08 Dec 2016

  27. Chia, Y.Y., Lee, L.H., Shafiabady, N., Isa, D.: A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Appl. Energy 137, 588–602 (2015)

    Article  Google Scholar 

  28. Chmielewski, A., Gontarz, S., Szulim, P.: Modelowo-wsparte badania elektrochemicznych magazynów energii. Rynek Energii 126(5), 37–45 (2016). in Polish

    Google Scholar 

  29. Chmielewski, A., Szurgott, P.: Modelling and simulation of repeated charging/discharging cycles for selected Nickel-Cadmium batteries. J. KONES 22(1), 55–62 (2015)

    Google Scholar 

  30. Chmielewski, A., Gontarz, S., Gumiński, R., Mączak, J., Szulim, P.: Badania elektrochemicznych magazynów energii (Research on electrochemical energy stores). Przegląd Elektrotechniczny 92(10), 231–234 (2016)

    Google Scholar 

  31. Chmielewski, A., Radkowski, S.: Modelowanie procesu ładowania akumulatora elektrochemicznego pracującego w układzie kogeneracyjnym. Zeszyty Naukowe Instytutu Pojazdów 2(98), 83–89 (2014)

    Google Scholar 

  32. Chmielewski, A., Mączak, J., Szulim, P.: Experimental research of electrochemical energy storage. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) AUTOMATION 2017. AISC, vol. 550, pp. 227–235. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  33. Czerwiński, A.: Akumulatory, baterie, ogniwa. WKŁ (2012)

    Google Scholar 

  34. Lai, Y., Du, S., Ai, L., Ai, L., Cheng, Y., Tang, Y., Jia, M.: Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates. Int. J. Hydrog. Energy 40, 13039–13049 (2015)

    Article  Google Scholar 

  35. Li, J., Cheng, Y., Jia, M., Tang, Y., Lin, Y., Zhian, Z., Liu, Y.: An electrochemical-thermal model based on dynamic responses for lithium iron phosphate battery. J. Power Sources 255, 130–143 (2014)

    Article  Google Scholar 

  36. Saito, Y., Shikano, M., Kobayashi, H.: Heat generation behavior during charging and discharging of lithium-ion batteries after long-time storage. J. Power Sources 244, 294–299 (2013)

    Article  Google Scholar 

  37. Saw, L.H., Ye, Y., Tay, A.A.O.: Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling. Energy Convers. Manag. 87, 367–377 (2014)

    Article  Google Scholar 

  38. Wang, Q., Sun, Q., Ping, P., Zhao, X., Sun, J., Lin, Z.: Heat transfer in the dynamic cycling of lithium–titanate batteries. Int. J. Heat Mass Transf. 93, 896–905 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chmielewski, A., Mączak, J., Szulim, P. (2017). Experimental Research and Simulation Model of Electrochemical Energy Stores. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics