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Abstract. Personal indoor localization is usually accomplished by fus-
ing information from various sensors. A common choice is to use the
WiFi adapter that provides information about Access Points that can
be found in the vicinity. Unfortunately, state-of-the-art approaches to
WiFi-based localization often employ very dense maps of the WiFi sig-
nal distribution and require a time-consuming process of parameter se-
lection. On the other hand, camera images are commonly used for visual
place recognition, detecting whenever the user observes a scene simi-
lar to the one already recorded in a database. Visual place recognition
algorithms can work with sparse databases of recorded scenes and are
in general simple to parametrize. Therefore, we propose a WiFi-based
global localization method employing the structure of the well-known
FAB-MAP visual place recognition algorithm. Similarly to FAB-MAP,
our method uses Chow-Liu trees to estimate a joint probability distribu-
tion of re-observation of a place given a set of features extracted at places
visited so far. However, we are the first who apply this idea to recorded
WiFi scans instead of visual words. The new method is evaluated on the
UJIIndoorLoc dataset used in the EvAAL competition, allowing a fair
comparison with other solutions.
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1 Introduction

Solving the self-localization problem is important for mobile robots, as the key
component of autonomy. On the other hand, localization is also crucial for peo-
ple, allowing them to find themselves in an unknown environment, and then
efficiently navigate to the destination. Outdoor localization is mainly a solved
problem since the introduction of the Global Positioning System (GPS). Unfor-
tunately, the GPS signal is not available indoors, and therefore various solutions
are developed to allow similar functionality in buildings. Especially interesting
are solutions that do not require modifications to the existing infrastructure
of buildings, allowing to introduce personal localization into existing sites (e.g.
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office buildings, shopping malls) easily and at a reasonable cost. Among the
variety of existing approaches, the solutions relying only on the sensors of the
ubiquitous mobile devices (e.g. smartphones) are the most appealing to the po-
tential users. Nowadays, WiFi signals are available in most buildings that might
be of interest for personal localization, whereas those signals can be received by
every modern mobile phone or tablet. Thus, WiFi-based localization is of high
practical importance. WiFi localization based on signal fingerprints is similar
to visual place recognition when it comes to the underlying principles of data
processing. Both classes of localization systems contain a pre-recorded database
(called radio map for WiFi), and the current perception (image or signal scan
for WiFi). Those data are compared to entries in the database to find similarity
between the current perception and the places observed in the past. Therefore,
we propose to adopt the statistical learning mechanism by means of the Chow-
Liu tree [1], which was proven successful in the FAB-MAP algorithm to WiFi
fingerprints used as features that describe unique places. We believe that the
resulting method should be able to better understand the influence of informa-
tion contained in the appearance of WiFi Access Point (AP) in the scan for
localization purposes, than the already known algorithms for WiFi-based indoor
localization.

2 Related work

Typical mobile devices are equipped with a variety of sensors: accelerometers,
gyroscopes, magnetometers, cameras and WiFi/Bluetooth adapters. Due to the
limited precision of each sensing modality, the best localization results are ob-
tained when information from different sensors is fused. The inertial sensors are
usually combined to create Attitude and Heading Reference System (AHRS) [2],
which outputs the orientation of the device. The camera is also a useful sensor,
as it enables to perceive the surroundings in a way similar to human percep-
tion. Processing a continuous stream of images allows the localization system to
estimate pose by means of Visual Odometry (VO), which can be computed in
real-time on a mobile device [3], but the process is computationally demanding
and thus has a negative impact on the battery life. Alternatively, the images
can be processed at discrete poses to detect if the camera observes an already
visited location or a place from a pre-recorded database describing the envi-
ronment [4]. Visual place recognition systems allow obtaining a global position
estimate without much computational burden. The FAB-MAP algorithm [5] is
a state-of-the-art solution proven in challenging environments. It learns the fre-
quency of occurrence of similar (visual) features and co-occurrence of those fea-
tures in order to obtain robust place recognition results.

In WiFi-based localization, the state-of-the-art is WiFi fingerprinting [6],
which assumes that it is possible to obtain a precise and dense map of scans in
known locations (radio map). During the localization phase, a WiFi scan is com-
pared to the scans stored in the radio map, finding best matches according to the
chosen metrics. To obtain the final position of the user, the positions of k best
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matches (nearest neighbors) from the radio map are averaged without or with
additional weights, thus this algorithm is called kNN or wkNN [6]. Moreover,
when the localization task assumes the existence of multiple buildings and/or
floors, the WiFi-based method estimates at first the building, next the floor, and
then performs the localization procedure described above. The fingerprinting ap-
proach with careful, manual tuning achieves precise localization results, as can
be seen in the annual localization challenge at the Indoor Positioning and Indoor
Navigation (IPIN) conference [7]. The lengthy and sometimes cumbersome pro-
cess of manual tuning in the fingerprinting approach encourages researchers to
look for a machine learning solution to the WiFi-based localization. The existing
machine learning approaches to WiFi fingerprinting include using Gaussian pro-
cesses [8], neural networks [9], and random forests [10]. So far these approaches
provide worse localization results than the best wkNN-based solutions. However,
we have already demonstrated [11] that combining WiFi fingerprinting and vi-
sual place recognition can be beneficial, as those systems can be joined to operate
in locations, where one of the systems might fail due to the lack of WiFi signals
or due to the limited visual information being available. This paper extends this
line of research investigating if a machine learning approach successfully used in
visual place recognition may be directly adopted to WiFi fingerprints.

3 Adopting FAB-MAP to WiFi features

FAB-MAP [5] was designed especially to perform loop-closing for SLAM (Si-
multaneous Localization and Mapping) in robotics, and therefore was developed
with scalability and robustness in mind. The algorithm is based on a probabilis-
tic model that describes the probability p(Li|Zk) that an already visited place
Li is being observed, given a set of all feature vectors Zk = {Z1, Z2 . . . , Zk}
extracted at places visited so far (including the present one). This model en-
ables to determine whether a new place is being visited, or a place visited in
the past is re-observed. Although such interpretation of the model is suitable for
the above-mentioned loop-closing problem, the task of estimating user position
for indoor localization requires a different view. If we substitute the collection of
already visited places with a database of known locations pin-pointed to a floor
map, we get a probability distribution of the user position in this map. This idea
is exploited in our recent work [4].

Our solution is based on the FAB-MAP and exploits the probabilistic infer-
ence mechanism implemented in the original algorithm. The differences come
from the entirely different characteristics of locations we exploit: WiFi signal
scans instead of point-like visual features. This caused substantial changes to
the approach, which is used to create the vector of features, and to the train-
ing phase of the algorithm. A comparison of the block schemes for both algo-
rithms is depicted in Fig. 1. In the FAB-MAP algorithm, the Bag of Visual
Words (BOVW) representation of visual (point) features is used to character-
ize j-th image/location Zj . The BOVW vector is a histogram of visual words
occurrences in an image, where the vocabulary is learned by clustering salient
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Fig. 1. A schematic overview of a) the original FAB-MAP algorithm, and b) the WiFi-
based version. Blocks with thick borders are input data sources. Blocks denoted by
darker color are common for both solutions. Note that our version creates feature
vectors directly, thus it does not use any vocabulary. Therefore, no counterpart to the
“BOVW vocabulary” block is present

features extracted from training examples. The probabilistic model associates
each histogram bin with a random variable zi ∈ Zj . If the i-th bin is zero, which
means that the feature wasn’t detected on the image, then zi is set to 0, in the
opposite case zi is set to 1. To separate a location model from the model of
dependencies between features the hidden variables ei were introduced. These
variables indicate whether a feature is present in the image. Note that the pres-
ence of a feature does not imply detection of this feature, because detectors are
not perfect [12]. It is not uncommon that features are not detected despite their
presence and that they are detected while being absent.

The main idea of place recognition based on WiFi scans is to employ vector
features related to the WiFi signal measurements (scans) in place of the BOVW
vectors (histograms). Since FAB-MAP maps each feature onto a binary repre-
sentation, a proper conversion of a WiFi scan was necessary to get the most of
the descriptive power out of it. A natural idea that comes to mind is to con-
struct a vector v of the networks’ presence in the current scan with the value
vi = 0 indicating an absence of the i-th network, and vi = 1 indicating presence
of this network. This vector should contain vi for every network, identified by
its unique BSSID number, present in the considered area. Unfortunately, such a
conversion throws away all information about the strength of the signal (RSSI),
which may be beneficial to the ability to discriminate different locations with a
similar pattern of networks presence. Thus, we decided to extend the vector v,
so for every possible network, it contains k bins forming a sub-vector bi for i-th
network. Each bin has an associated threshold and whenever the signal strength
(expressed in dBm) of the i-th network exceeds this threshold, its value is set to
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1. Thresholds were uniformly distributed in range < −110,−10 > with a step
(bin width) of 10 dBm. If a network is not present in the current scan, then all
bins contain 0. This process is illustrated in Fig. 2.

Fig. 2. Illustration of conversion from RSSI values to b vector. RSSI values are ex-
pressed in dBm

The final feature vector is a concatenation of all bi vectors. A schematic
overview of the feature vector extension is presented in Fig. 3.

Fig. 3. A schematic view of the feature vector extension process

The FAB-MAP algorithm requires training phase prior to operation. The
training phase consists of the Chow-Liu tree training step and construction of
a database of known places that are going to be recognized. Given a dataset
of scans made at various places in which multiple scans are taken at the same
location, we had to split it into two datasets: one characterizing the environment
and containing scans taken at disjoint locations for Chow-Liu tree training, and
another one containing scans that will form a database of known places. We
used DBScan [13] algorithm with parameters ε = 1 and MinPts = 1 to divide
the input dataset into clusters of scans taken at one location. The ε parameter
bounds the distance in which neighbors are searched, while MinPts denotes the
minimum number of scans that are allowed to form a cluster.

A random scan drawn from each cluster was used to characterize the envi-
ronment, whereas 10 other scans (also drawn at random) were used to construct
the database of known places. It was necessary to use only 10 scans captured
at a single location in order to balance the dataset, because at some locations
there were many scans, while at others only a few. It caused locations with more
scans to be favoured over locations with fewer scans.

A proper place recognition can take place after the training phase. Given a
list of detected networks with BSSIDs and signal strengths for each of them, a
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feature vector is computed and feed to the FAB-MAP-like recognition procedure.
The procedure returns a list of matches with a probability assigned to every
location from the database of known places. We assume that the location with
the highest probability is the current user location in the map.

OpenFABMAP [14], a publicly available C++ implementation of the FAB-
MAP algorithm was used as the basis for our place recognition system. We made
our code also publicly available through the GitHub platform 1.

4 Experimental data

Another important part of designing a machine learning system is to properly
evaluate the proposed solution. Of no less importance is the ability to compare
the results to the state-of-the-art approaches. Therefore, we decided to use the
UJIIndoorLoc [15] dataset, which is a database of WiFi scans captured at three
buildings of Universitat Jaume I in Madrid, Spain. The area at which scans were
taken covers almost 11000 m2 and contains 13 different floors. A wide range of de-
vices (25) and multiple users guarantee a diversity of scans origin. The database
consists of 19937 training and 1111 validation examples. For each example, infor-
mation about detected WiFi networks along with their signal strength in dBm,
longitude, latitude, building ID and floor number is attached. This information
enabled us to set up an experiment to evaluate the efficiency of our system.
Unfortunately, the original testing examples used in the EvAAL competition at
IPIN 2015 [7] are not publicly accessible, therefore we used a part of the training
dataset in the validation procedure, and treated the validation dataset as a test
set. It is worth noting that the training dataset was collected approximately 4
months prior to the collection of validation and testing datasets. Moreover, the
datasets were collected by different users and using different mobile devices. All
that makes the estimation of user location a challenging task, especially taking
into consideration that we were forced to use similar datasets in both the training
and validation steps, which often brings a risk of overfitting the parameters.

5 Parameter tuning

An important property of machine learning algorithms is an ability to automat-
ically estimate parameter values used in the algorithm on the basis of training
examples. Nevertheless, usually there are few meta-parameters that have to be
set prior to the training procedure.

Although these meta-parameters are often set manually by the system de-
signer using his experience and observing the system behaviour, we have decided
to automatize this process by using grid search and the validation dataset. In the
FAB-MAP algorithm, there are two parameters that have a substantial influence
on the system behaviour, namely PzGe and PzGne. These are detector model
parameters and determine the p(zi = 1|ei = 0), and p(zi = 0|ei = 1) quantities.

1 https://github.com/LRMPUT/WiFi-FAB-MAP.git

https://github.com/LRMPUT/WiFi-FAB-MAP.git
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Fig. 4. Score on a separated part of training dataset as a function of parameters. Note
that parameter axes are logarithmic

The balanced training dataset containing 10 scans for each location was divided
into two parts: subtraining and validation. The subtraining set was used to con-
struct a database of known places while the validation one was used to evaluate
the current parameter values. The space of parameters was extensively explored
by using grid search with an exponential step. The PzGe parameter values were
swept from exp(−0.01) ≈ 0.99 to exp(−4) ≈ 0.018 with a step of exponential
function argument equal to 0.05 and PzGne values from exp(−2) ≈ 0.14 to
exp(−8) ≈ 0.00034 with the same step size. The use of exponential steps is mo-
tivated by a wide-spread application of the exponential family in probabilistic
modeling [16].

In the evaluation procedure, we used the accuracy of predicting a correct floor
and a correct building at the same time as the score measure. Such prediction
of the user location may seem imprecise, but it is often the case when coarse
positioning is done by one algorithm and the fine position is computed by another
one. The results of the parameter tuning procedure are presented in Fig. 4. Since
there are only two parameters, it was convenient to plot a surface to visualize
the influence of these parameters on the recognition accuracy. Finally, the best
parameters were determined as PzGe = 0.31 and PzGne = 0.043.

6 Experimental evaluation

During experimental evaluation we computed score for every tested configura-
tion. The score was the accuracy of correctly predicting the building and the
floor at the same time. The prediction was considered correct if a building ID
and floor number of the matched location from the database of known places
were the same as the building ID and floor number of the example. Additionally,
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we calculated the mean distance error ed among the correctly classified examples
using formula:

ed =
1

|C|
∑
i∈C
|pi −m(i)|, (1)

where C is a set of correctly classified examples, pi is a position of i-th example in
meters, and m(i) is a position of the matched location from database of known
places.

Table 1. Accuracy results for predicting the building and the floor

Bin width PzGe PzGne score ed [m]

5 0.3135 0.0429 0.82 9.99
5 0.3135 0.0043 0.89 8.50
5 0.3135 0.0004 0.92 8.55
10 0.4916 0.0550 0.81 9.96
10 0.4916 0.0055 0.89 8.21
10 0.4916 0.0006 0.91 8.40

The results of the experimental evaluation are gathered in Tab. 1. We tested
parameters obtained in a validation procedure as well as parameters with lowered
PzGne values. The decision to test lower values of PzGne was motivated by
the fact that in the case of WiFi scans it is rather unlikely to not detect a
network that is in the range of a device, and we were not in a possession of
a proper dataset for the validation procedure. In Fig. 5 we plotted location
matches for all examples from the testing dataset. Red lines connect locations
of examples with matched locations from the database of known places. Most of
the matches are invisible because they are very short, but the rest indicate that
frequent mistakes are floor mismatches. Locations that are above or below the
true location are prone to be wrongly matched, which is expected as the WiFi
signal easily penetrates the ceiling separating floors.

7 Conclusions
We proposed and tested a novel WiFi fingerprinting method which adopts the
FAB-MAP algorithm, originating from the visual appearance-based place recog-
nition. The key part of the algorithm adoption is the new method of feature
vectors generation from a list of detected WiFi networks. Another relevant con-
tribution of this paper is the procedure for preparation of the training data
for the Chow-Liu tree and for the database of known places. The solution was
evaluated on a challenging, publicly available dataset and proved to provide sat-
isfactory results. To fully exploit the automated pipeline of the system tuning
a proper validation dataset would be needed. Only by examining the score on
examples that were collected independently, under different conditions the pa-
rameter tuning procedure would be enabled to find parameter values that are
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Fig. 5. Visualization of location assignments. Blue points are locations from database
of known places, green points are testing examples, and red lines are matches between
testing examples and locations from the database of known places

not overfitted. As it comes to the influence of bin width, the difference between
dividing the signal strength range into 22 (bin width of 5) or 11 (bin width of
10) intervals can be neglected, justifying the use of larger bins for computation
efficiency.

Future work will focus on locating the user or robot using WiFi data clusters
much smaller than whole floors. Knowledge of the corridor in which a device is
located often can be sufficient for indoor navigation when combined with other
premises about the user position [17]. We also plan to implement a more detailed
location model than the one available in OpenFABMAP.
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