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Abstract. [Context and motivation] Product Line Engineering (PLE) is in-
creasingly common practice in industry to develop complex systems for multiple
customers with varying needs. In many business contexts, use cases are central
development artifacts for requirements engineering and system testing. In such
contexts, use case configurators can play a significant role to capture variable
and common requirements in Product Line (PL) use case models and to gener-
ate Product Specific (PS) use case models for each new customer in a product
family. [Question/Problem] Although considerable research has been devoted
to use case configurators, little attention has been paid to supporting the incre-
mental reconfiguration of use case models with evolving configuration decisions.
[Principal ideas/results] We propose, apply, and assess an incremental recon-
figuration approach to support evolving configuration decisions in PL use case
models. PS use case models are incrementally reconfigured by focusing only on
the changed decisions and their side effects. In our prior work, we proposed and
applied Product line Use case modeling Method (PUM) to support variability
modeling in PL use case diagrams and specifications. We also developed a use
case configurator, PUMConf, which interactively collects configuration decisions
from analysts to generate PS use case models from PL models. Our approach is
built on top of PUM and PUMConf. [Contributions] We provide fully automated
tool support for incremental configuration as an extension of PUMConf. Our ap-
proach has been evaluated in an industrial case study in the automotive domain,
which provided evidence it is practical and beneficial.

Keywords: Product Line Engineering, Use Case-Driven Development.

1 Introduction

Product Line Engineering (PLE) is becoming common practice in many domains such
as automotive and avionics, due to the increasing complexity of software systems that
warrant better support for reusable software artifacts. In such domains, many business
contexts are use case-driven where use cases are the main artifacts driving requirements
engineering and system testing practices [1] [2] [3]. This is also the case for the in-
dustrial context of our work, IEE [4], a leading supplier of embedded systems in the
automotive domain. The current development practice at IEE is use case-driven and
based on clone-and-own reuse [5]. To develop a new product in a new project, IEE



analysts elicit requirements as a use case diagram and its accompanying use case speci-
fications. For each new customer of the product, they need to clone the current models,
and negotiate variabilities with the customer to produce new use case models. This is
a manual, error prone, and time-consuming practice since variability information is not
explicitly represented.

The need for PLE support in the context of use case-driven development has already
been acknowledged and several product line use case modeling and configuration ap-
proaches have been proposed [6] [7] [8]. Existing approaches rely on feature modeling,
including establishing and maintaining traces between features and use case models [9].
Due to limited resources, IEE, as well as other software development companies, find
such additional traceability and maintainability effort to be impractical. In addition,
existing use case configurators (e.g., [6] [7] [8]) do not support incremental reconfig-
uration of use case models resulting from changes in configuration decisions, e.g., a
selected variant use case being unselected.

In practice, for example at IEE and for a variety of reasons, analysts manually assign
traces from the configured use case models to other software and hardware specifica-
tions as well as to the customers’ requirements documents for external systems [10].
Furthermore, configuration decisions frequently change, resulting in the reconfigura-
tion of Product Specific (PS) use case models. When the use case models are reconfig-
ured for all decisions, including unchanged and unaffected decisions, manually assigned
traces are lost. The analysts need to reassign all the traces after each reconfiguration. It
is therefore vital to enable the incremental reconfiguration of use case models focusing
only on changed decisions and their side-effects. With such support, the analysts could
then reassign traces only for the parts of the reconfigured models impacted by deci-
sion changes. Our main motivation is to preserve the unimpacted parts of the PS use
case models for evolving configuration decisions, thus avoiding manual effort during
reconfiguration such as manual updating of traces from PS models to other documents.

In our previous work [11], we proposed and assessed the Product line Use case
modeling Method (PUM) to support variability modeling in Product Line (PL) use case
diagrams and specifications, without making use of feature models, thus avoiding un-
necessary modeling and traceability overhead. PUM includes existing PL extensions for
use case diagrams [12] [13] and, for modeling variability in use case specifications, we
introduced new extensions for the Restricted Use Case Modeling method (RUCM) [14].
Building on this, we developed a use case-driven configuration approach [15] support-
ing three crucial activities. First, the analyst is guided to make configuration decisions
in an appropriate order. Second, the consistency of configuration decisions is ensured by
automatically identifying contradicting decisions. Third, PS use case diagram and spec-
ifications are automatically generated from PL models and configuration decisions. Our
configuration approach is supported by a tool, PUMConf, integrated with IBM DOORS.

In this paper, we propose, apply and assess an incremental reconfiguration approach,
based on PUM and PUMConf, to support the evolution of configuration decisions for
PL use case models. We do not address here evolving PL use case models, which is an
entirely different problem and needs to be treated in a separate approach. In our pro-
posed solution, the PS use case diagram and specifications are incrementally reconfig-
ured by focusing only on the changed configuration decisions and their side effects. To



do so, we implemented a model differencing pipeline which identifies decision changes
to be used in the regeneration of PS models. There are two sets of decisions: (i) the
set of previously made decisions used to initially generate the PS use case models and
(ii) the set of decisions including decisions changed after the initial generation of the
PS models. Our approach compares the two sets to incrementally regenerate the PS use
case models. We extended our configurator, PUMConf, to fully automate our approach.
We also report an industrial case study demonstrating its applicability and benefits.

This paper is structured as follows. In Section 2, we discuss the related work. Sec-
tion 3 provides a short overview of the background on PUM and PUMConf, proposed
in our previous work, on which this paper builds. In Section 4, we provide an overview
of the approach. Sections 5 and 6 provide the details of the core technical parts of our
approach. Sections 7 and 8 present our tool support and industrial case study along with
results and lessons learned. We conclude the paper in Section 9.

2 Related Work

Several use case-driven configuration approaches were proposed in the literature (e.g.,
[6] [7] [8]). These approaches do not support incremental reconfiguration of use cases
for changes in configuration decisions. There are also more general configuration ap-
proaches that can be customized to configure PS use case models. For instance, DO-
PLER [16] supports capturing variability information as a variability model, and mod-
eling any type of artifact as asset models. Variability and asset models are linked by
using trace relations. Heider et al. [17] [18] propose an approach as an extension of
DOPLER to identify the impact of changes of variability information on products. For
a change in a variability model of a product line, the approach identifies whether con-
figuration decisions for the existing products need to be changed as well. Then, it recon-
figures all the products in the product line and also compares the reconfigured products
with the previous version to inform the analysts about the differences in the products.
However, it focuses on changes in variability information, not changes in decisions. It
is also not incremental, limiting its applicability, as the reconfiguration encompasses all
the decisions, not only the affected ones.

Considerable attention in the model-driven engineering research community has
been given to incremental model generation/transformation for model changes (e.g., [19]
[20] [21]), and this line of work has inspired initiatives in many software engineering
domains. For instance, Vogel et al. [22] use incremental model transformation tech-
niques for synchronizing runtime models by integrating a general-purpose model trans-
formation engine into their runtime modeling environment. Bidirectional model trans-
formations are employed by Eramo et al. [23] to support the synchronization and in-
teroperability of architecture models for architecture model changes. Alternatively, we
could also have employed a generic model transformation engine and language to im-
plement the incremental generation of PS use case models. Compared to model trans-
formation languages, in terms of loading, matching and editing text in natural language,
Java provides much more flexibility for handling plain text use case specifications. As a
result, we used Java to implement the generation of PS use case models in our prior
work [15], and also to implement the incremental reconfiguration of PS models as



a model differencing and reconfiguration pipeline (see Section 4). To the best of our
knowledge, our approach is the first work which supports incremental reconfiguration
of PS use case models for evolving configuration decisions in a product family.

3 Background

In this section we give the background information about elicitation of PL use case
diagram and specifications (Section 3.1), and our configuration approach (Section 3.2).

In the rest of the paper, we use Smart Trunk Opener (STO) as a case study. STO
is a real-time automotive embedded system developed by IEE. It provides automatic,
hands-free access to a vehicle’s trunk, in combination with a keyless entry system. In
possession of the vehicle’s electronic remote control, the user moves her leg in forward
and backward directions at the vehicle’s rear bumper. STO recognizes the movement
and transmits a signal to the keyless entry system, which confirms that the user has the
remote. This allows the trunk controller to open the trunk automatically.

3.1 Elicitation of Variability in PL Use Cases

Elicitation of PL use case models is based on the Product line Use case modeling
Method (PUM) [11]. In this section, we give a brief description of the PUM artifacts.
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Fig. 1. Part of the PL Use Case Diagram for STO

Use Case Diagram with PL
Extensions For use case dia-
grams, we employ the PL exten-
sions proposed by Halmans and
Pohl [12] [13] since they support
explicit representation of vari-
ants, variation points, and their
dependencies (Fig. 1). We do not
introduce any further extensions.

A use case is either Essen-
tial or Variant. Variant use cases
are distinguished from essen-
tial (mandatory) use cases, i.e.,
mandatory for all the products in
a product family, by using the
‘Variant’ stereotype. A variation
point given as a triangle is associated to one, or more than one use case using the ‘in-
clude’ relation. The mandatory variation points indicate where the customer has to make
a selection for a product (the black triangles in Fig. 1). A ‘tree-like’ relation, contain-
ing a cardinality constraint, is used to express relations between variants and variation
points, which are called variability relations. The relation uses a [min..max] notation
in which min and max define the minimum and maximum numbers of variants that can
be selected for the variation point. A variability relation is optional where (min = 0) or
(min > 0 and max < n); n is the number of variants in a variation point. A variability



relation is mandatory where (min = max = n). Optional and mandatory relations are
depicted with light-grey and black filled circles, respectively (Fig. 1). For instance, the
‘Provide System User Data’ essential use case has to support multiple methods of pro-
viding data where the methods of providing data via IEE QC mode and Standard mode
are mandatory. In addition, the customer can select the method of providing data via
diagnostic mode. In STO, the customer may decide the system does not store the errors
determined while the operating status is being identified (see the ‘Storing Error Status’
optional variation point in Fig. 1). The extensions support the dependencies require and
conflict among variation points and variant use cases [13]. Based on require in Fig. 1,
the selection of the variant use case in ‘Storing Error Status’ implies the selection of
the variant use case in ‘Clearing Error Status’. Further variability information is given
in PL use case specifications. For instance, only PL use case specifications indicate in
which flows of events a variation point is included.

Table 1. Some STO Use Cases in the extended RUCM
1 USE CASE Recognize Gesture
2 1.1 Basic Flow
3 1. INCLUDE USE CASE Identify System Operating Status.
4 2. The system VALIDATES THAT the operating status is valid.
5 3. The system REQUESTS the move capacitance FROM the sensors.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 <OPTIONAL>Bounded Alternative Flow
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. RESUME STEP 1.
12 3. ENDIF
13 1.3 Specific Alternative Flow
14 RFS 2
15 1. ABORT.
16 1.4 Specific Alternative Flow
17 RFS 4
18 1. The system increments the OveruseCounter by the increment step.
19 2. ABORT.
20
21 USE CASE Identify System Operating Status
22 1.1 Basic Flow
23 1. The system VALIDATES THAT the watchdog reset is valid.
24 2. The system VALIDATES THAT the RAM is valid.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.4 Specific Alternative Flow
28 RFS 4
29 1. INCLUDE <VARIATION POINT: Storing Error Status>.
30 2. ABORT.
31
32 USE CASE Provide System User Data
33 1.1 Basic Flow
34 1. The tester SENDS the system user data request TO the system.
35 2. INCLUDE <VARIATION POINT : Method of Providing Data>.
36
37 <VARIANT>USE CASE Provide System User Data via Standard Mode
38 1.1 Basic Flow
39 V1. <OPTIONAL>The system SENDS calibration TO the tester.
40 V2. <OPTIONAL>The system SENDS sensor data TO the tester.
41 V3. <OPTIONAL>The system SENDS trace data TO the tester.
42 V4. <OPTIONAL>The system SENDS error data TO the tester.
43 V5. <OPTIONAL>The system SENDS error trace data TO the tester.

Restricted Use Case Model-
ing (RUCM) and its Exten-
sions This section introduces
the RUCM template and its
PL extensions which we pro-
posed. RUCM provides re-
striction rules and keywords
constraining the use of natural
language [14]. Since RUCM
was not designed for PL mod-
eling, we introduced some PL
extensions (see Table 1). In
RUCM, use cases have basic
and alternative flows (Lines 2,
8, 13, 16, 22, 27, 33 and 38).
In Table 1, we omit some al-
ternative flows and some ba-
sic information such as actors
and pre/post conditions.

A basic flow describes a
main successful path that sat-
isfies stakeholder interests. It
contains use case steps and a
postcondition (Lines 3-7, 23-
26 and 39-43). A step can be
one of the following interac-
tions: an actor sends a request
or data to the system (Line
34); the system validates a re-
quest or data (Line 4); the sys-
tem replies to an actor with a
result (Line 7). The system can alter its internal state (Line 18). The inclusion of an-



other use case is given in a step with the keyword ‘INCLUDE USE CASE’ (Line 3).
The keywords are written in capital letters. ‘VALIDATES THAT’ (Line 4) indicates a
condition that must be true to take the next step, otherwise an alternative flow is taken.

An alternative flow describes other scenarios, both success and failure. It always
depends on a condition in a specific step of the basic flow. RUCM has specific, bounded
and global alternative flows. A specific alternative flow refers to a step in the basic
flow (Lines 13, 16, and 27). A bounded alternative flow refers to more than one step in
the basic flow (Line 8), while a global one refers to any step in the basic flow. ‘RFS’
is used to refer to reference flow steps (Lines 9, 14, 17, and 28). Bounded and global
alternative flows begin with ‘IF .. THEN’ for the conditions under which they are taken
(Line 10). Specific alternative flows do not necessarily begin with ‘IF .. THEN’ since a
guard condition is already indicated in their reference flow steps (Line 4).

Our extensions are (i) new keywords for modeling interactions in embedded sys-
tems and (ii) new keywords for modeling variability. The keywords ‘SENDS .. TO’ and
‘REQUESTS .. FROM’ are to distinguish system-actor interactions (Lines 5, 7, 34, and
39-43). We introduce the notion of variation point and variant, complementary to the
extensions in Section 3.1, into RUCM. Variation points can be included in basic or al-
ternative flows with the keyword ‘INCLUDE <VARIATION POINT : ... >’ (Lines 29
and 35). Variant use cases are given with the keyword ‘<VARIANT >’ (Line 37).

Some variability cannot be captured in PL use case diagrams due to the required
level of granularity for product configuration. To model such variability, as part of our
extensions, we introduce optional steps, optional alternative flows and a variant order
of steps. Optional steps and alternative flows begin with ‘<OPTIONAL>’ (Lines 8 and
39-43). We use ‘V’ before any step number to express variant step orders (Lines 39-43).

3.2 Configuration of PS Use Case Models
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Fig. 2. Generated PS Use Case Diagram

PUMConf relies on variability in-
formation given in the PL use case
diagram and specifications. The
user selects (1) variant use cases
in the PL diagram and (2) use case
elements in the PL specifications,
to generate the PS models.

The user makes decisions for
the variation points in Fig. 1.
PUMConf automatically gener-
ates the PS use case diagram from
the PL diagram and the diagram
decisions (see Fig. 2 generated from Fig. 1). For instance, based on the decision for
Method of Providing Data in Fig. 1, PUMConf creates Provide System User Data via
IEE QC Mode, Provide System User Data via Standard Mode and two include relations
in Fig. 2.

In Table 1, there are two variation points (Lines 29 and 35), one variant use case
(Lines 37-43), five optional steps (Lines 39-43), one optional alternative flow (Lines



8-12), and one variant order group (Lines 39-43). The user selects only three optional
steps with the order V3, V1, and V5. The optional alternative flow is not selected.

Table 2. Some of the Generated PS Specifications
1 USE CASE Recognize Gesture
2 1.1 Basic Flow
3 1. INCLUDE USE CASE Identify System Operating Status.
4 2. The system VALIDATES THAT the operating status is valid.
5 3. The system REQUESTS the move capacitance FROM the sensors.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 Specific Alternative Flow
9 RFS 2
10 1. ABORT.
11 1.3 Specific Alternative Flow
12 RFS 4
13 1. The system increments the OveruseCounter by the increment step.
14 2. ABORT.
15
16 USE CASE Identify System Operating Status
17 1.1 Basic Flow
18 1. The system VALIDATES THAT the watchdog reset is valid.
19 2. The system VALIDATES THAT the RAM is valid.
20 3. The system VALIDATES THAT the sensors are valid.
21 4. The system VALIDATES THAT there is no error detected.
22 1.4 Specific Alternative Flow
23 RFS 4
24 1. INCLUDE USE CASE Store Error Status.
25 2. ABORT.
26
27 USE CASE Provide System User Data
28 1.1 Basic Flow
29 1. The tester SENDS the user data request TO the system.
30 2. The system VALIDATES THAT ‘Precondition of Provide System

User Data via Standard Mode’.
31 3. INCLUDE Provide System User Data via Standard Mode.
32 1.2 Specific Alternative Flow
33 RFS 2
34 1. INCLUDE Provide System User Data via IEE QC Mode.
35 2. ABORT.
36
37 USE CASE Provide System User Data via Standard Mode
38 1.1 Basic Flow
39 1. The system SENDS the trace data TO the tester.
40 2. The system SENDS the calibration data TO the tester.
41 3. The system SENDS the error trace data TO the tester.

The PS specifications are au-
tomatically generated from the
PL specifications and the dia-
gram and specification decisions.
(see Table 2 generated from Ta-
ble 1). For instance, based on the
diagram decision for Method of
Providing Data in Fig. 1, PUM-
Conf creates two include state-
ments for Provide System User
Data via Standard Mode and via
IEE QC Mode (Lines 31 and
34 in Table 2), a validation step
(Line 30), and a specific alterna-
tive flow where Provide System
User Data via IEE QC Mode is
included (Lines 32-35). The val-
idation step checks if the precon-
dition of Provide System User
Data via Standard Mode holds.
If it holds, Provide System User
Data via Standard Mode is ex-
ecuted in the basic flow (Line
31). If not, the alternative flow
is taken to execute Provide Sys-
tem User Data via IEE QC Mode
(Lines 32-35). Selected optional
steps and alternative flows are in-
cluded in the PS specifications,
while variant order groups are or-
dered (Lines 39-41).

4 Overview of the Approach

The reconfiguration of PS models is implemented as a pipeline (Fig. 3). Configuration
decisions are captured in a decision model during the decision-making process. The
decision model conforms to a decision metamodel, described in our prior work [11].
PUMConf keeps two decision models, i.e., the decision model before changes (M1 in
Fig. 3) and the decision model after changes (M2 in Fig. 3). Fig. 4 provides the decision
metamodel and the two input decision models for the PL models in Fig. 1 and Table 1.

The pipeline takes the decision models, and the PS diagram and specifications as
input. The PS models are reconfigured, as output, together with an impact report, i.e.,
list of reconfigured parts of the PS models. The pipeline has three steps given in Fig. 3.
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In Step 1, Matching decision model elements, the structural differencing of M1 and
M2 is done by looking for the correspondences in M1 and M2. To that end, we devise
an algorithm that identifies the matching model elements in M1 and M2. The output of
Step 1 is the corresponding elements, representing decisions for the same variations, in
M1 and M2 (Section 5).

The decision metamodel in Fig. 4(a) includes the main use case elements for which
the user makes decisions (i.e., variation point, optional step, optional alternative flow,
and variant order). In a variation point, the user selects variant use cases to be included
for the product. For PL use case specifications, the user selects optional steps and alter-
native flows to be included and determines the order of steps (variant order). Therefore,
the matching elements in Step 1 are the pairs of variation points and use cases including
the variation points, the pairs of use cases and optional alternative flows in the use cases,
and the triples of use cases, flows in the use cases, and optional steps in the flows.

In Step 2, Change calculation, decision-level changes are identified from the cor-
responding model elements (see Section 5). A set of elements in M1 which does not
have a corresponding set of elements in M2 is considered to be a deleted decision,
which we refer to as DeleteDecision in the decision-level changes. Analogously, a set
of model elements in M2 which does not have a corresponding set of elements in M1
is considered to be added (AddDecision). Each set of corresponding model elements
with non-identical attribute values (see the red-colored attributes in Fig. 4(c)) is con-
sidered to be a decision-level change of the type UpdateDecision. Alternatively, we
could record changes during the decision-making process. However, the user might
make changes cancelling previous changes or implying some further changes. In such
a case, we would have to compute cancelled changes and infer new changes.

In Step 3, Regeneration of PS models, the PS use case diagram and specifications
are regenerated only for the added, deleted and updated decisions (see Section 6). For
instance, use cases selected in the deleted decisions are removed from the PS models,
while use cases selected in the added decisions are added in the PS models.

5 Model Matching and Change Calculation

We devise an algorithm (see Fig. 5) for the first two pipeline steps, Matching Decision
Model Elements and Change Calculation, in Fig. 3. The algorithm calls some match
functions (Lines 7-9 in Fig. 5) to identify the corresponding model elements, which
represent decisions for the same variations, in the input decision models. The match
functions implement Step 1 in Fig. 3.

– matchDiagramDecisions returns the set of pairs (variation point, use case) match-
ing in the decision models (M1 and M2), which are capturing which variation points
are included in the use cases involved in diagram decisions,

– matchFlowDecisions returns the set of pairs (use case, optional alternative flow)
matching in the input decision models (M1 and M2), which are capturing which
optional alternative flows are in the use cases involved in flow decisions,

– matchStepDecisions returns the set of triples (use case, flow, step) matching in the
input decision models (M1 and M2), which are capturing which steps are in the
flows of the use cases involved in step decisions.



Input: Initial decision model M1, New decision model M2
Output: Triple of sets of decision-level changes

(ADD, DELETE, UPDATE)

1. Let a pair (vp,uc) denote cases where vp is
a variation point and uc is a use case including vp

2. Let a pair (uc, f l) denote cases where uc is a use case
and f l is an optional alternative flow in uc

3. Let a triple (uc, f l,st) denote cases where uc is
a use case, f l is a flow in uc, and st is a step in f l

4. Let U1 and U2 be the sets of (vp,uc) in M1 and M2
5. Let F1 and F2 be the sets of (uc, f l) in M1 and M2
6. Let S1 and S2 be the sets of (uc, f l,st) in M1 and M2
7. U3← matchDiagramDecisions(U1, U2)
8. F3← matchFlowDecisions(F1, F2)
9. S3← matchStepDecisions(S1, S2)
10. DELETE← (U1\U3) ∪ (F1\F3) ∪ (S1\S3)
11. ADD← (U2\U3) ∪ (F2\F3) ∪ (S2\S3)
12. foreach (k ∈ (U3 ∩U1)) do
13. z← getMatchingDecision(k, U3)
14. SUC1← getSelectedUseCases(k, M1)
15. SUC2← getSelectedUseCases(z, M2)
16. if (SUC1 6= SUC2) then
17. UPDATE← UPDATE ∪ {k};
18. end if
19. end foreach
20. foreach (t ∈ (F3 ∩F1)) do
21. y← getMatchingDecision(t, F3)
22. if (t. f l.isSelected 6= y. f l.isSelected) then
23. UPDATE← UPDATE ∪ {t}
24. end if
25. end foreach
26. foreach (u ∈ (S3 ∩S1)) do
27. m← getMatchingDecision(u, S3)
28. if (u.st isOptionalStep) and

(u.st.isSelected 6= m.st.isSelected) then
29. UPDATE← UPDATE ∪ {u}
30. else
31. if (u.st.orderNumber 6= m.st.orderNumber)
32. then UPDATE← UPDATE ∪ {u}
33. end if
34. end if
35. end foreach
36. return(ADD, DELETE, UPDATE)

Fig. 5. Algorithm for Steps 1 and 2 in Fig. 3

The corresponding model elements
in the example decision models in
Fig. 4(b) and (c) are as follows (Lines
7-9 in Fig. 5):

– For decisions in the variation
points,
U3 = {(B6, B7), (C6,C7)},

– For decisions in the optional alter-
native flows, F3 = { /0},

– For decisions in the use case steps,
S3 = {(B11, B12, B13),
(B11, B12, B14),(B11, B12, B15),
(B11, B12, B16),(B11, B12, B17),
(C11,C12,C13),(C11,C12,C14),
(C11,C12,C15), (C11,C12,C16),
(C11,C12,C17)}.
A variant use case in a variation

point (vp) may include another vari-
ation point (vp′). Changing the deci-
sion for vp may imply another deci-
sion to be added or deleted for vp′.
As part of Step 2, Change Calculation,
the algorithm first identifies deleted
and added diagram decisions by check-
ing the pairs of variation points and
use cases which exist only in one of
the input decision models ((U1\U3)
and (U2\U3) in Lines 10-11). Simi-
lar checks are done for flow and step
decisions in the specifications (Lines
10-11). For the decision models in
Fig. 4, there is no deleted or added de-
cision ((U1\U3 = /0), (U2\U3 = /0),
(F1\F3= /0), (F2\F3= /0), (S1\S3=
/0), and (S2\S3 = /0)).

The matching pairs of variation
points and their including use cases represent decisions for the same variation point
((B6, B7) and (C6,C7) in Fig. 4(b) and (c)). If the selected variant use cases for the
same variation point are not the same in M1 and M2, the corresponding decision in
M1 is considered as updated in M2 (Lines 12-19). The variant use case Provide Sys-
tem User Data via Diagnostic Mode of the variation point Method of Providing Data
is unselected in M1 (B6, B7 and B9 in Fig. 4(b)), but selected in M2 (C6, C7 and C9
in Fig. 4(c)). The diagram decision for the pair (B6, B7) in M1 is identified as up-
dated (Line 17). To identify updated specification decisions, the algorithm compares
decisions across M1 and M2 that involve optional alternative flows, optional steps and



steps with a variant order (Lines 22-24, 28-30 and 31-33). In our example, the triples
(B11,B12,B14),(B11,B12,B15), (B11,B12,B16), and (B11,B12,B17) in Fig. 4 are
identified as updated decisions.

6 Regeneration of PS Use Case Models

After all the changes are calculated by matching the corresponding model elements in
the input decision models, the parts of PS use case models affected by the changed
decisions are automatically regenerated (Step 3 in Fig. 3).

STO System
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Recognize 
Gesture Identify System 

Operating 
Status

Provide System 
Operating 

Status

Tester

Provide System 
User Data

<<include>>
Store Error 

Status

<<include>>

Clear Error 
Status

Provide System 
User Data via 

Standard Mode

Provide System 
User Data via IEE 

QC Mode<<include>>

Clear Error 
Status via IEE 

QC Mode
<<include>>

STO 
Controller

<<include>>

<<include>>

Provide System 
User Data via 

Diagnostic Mode

<<include>>

Fig. 6. Regenerated PS Use Case Diagram
Our approach first handles the diagram decision changes to reconfigure the PS use

case diagram. For selected variant use cases in the added diagram decisions (i.e., in
the pairs (vp, uc) in ADD in Line 36 in Fig. 5), we generate the corresponding use
cases and include relations in the PS diagram. For selected variant use cases in deleted
diagram decisions (i.e., in the pairs (vp, uc) in DELETE in Line 36), we remove the
corresponding use cases and include relations from the PS diagram. If a selected variant
use case is unselected in an updated diagram decision (i.e., in the pairs (vp, uc) in
UPDATE in Line 36), we remove the corresponding use case from the PS diagram. For
unselected variant use cases which are selected in the updated diagram decisions, the
corresponding use cases and include relations are added to the PS diagram. Fig. 6 gives
the regenerated parts of the PS use case diagram in Fig. 2 for M1 and M2 in Fig. 4.

There is no added or deleted diagram decision in M1 and M2 in Fig. 4. The decision
for the variation point Method of Providing Data (i.e., (B6,B7) in UPDATE in Line 36)
is updated by selecting the variant use case Provide System User Data via Diagnostic
Mode. Only the corresponding use case and its include relation are added to the PS
diagram (red-colored in Fig. 6).

Changes for diagram and specification decisions are used to regenerate the PS spec-
ifications. For diagram decision changes, we add or delete the corresponding use case
specifications. Table 3 provides the regenerated parts of the PS specifications in Table 2,
for M1 and M2 in Fig. 4.



Table 3. Regenerated PS Use Case Specifications
1 USE CASE Provide System User Data
2 1.1 Basic Flow
3 1. The tester SENDS the user data request TO the system.
4 2. The system VALIDATES THAT ‘Precondition of Provide

System User Data via Standard Mode’.
5 3. INCLUDE Provide System User Data via Standard Mode.
6 1.2 Specific Alternative Flow
7 RFS 2
8 1. IF ‘Precondition of Provide System User Data via IEE QC

Mode’ holds THEN
9 2. INCLUDE Provide System User Data via IEE QC Mode.
10 3. ABORT.
11 4. ENDIF
12 1.3 Specific Alternative Flow
13 RFS 2
14 1. INCLUDE Provide System User Data via Diagnostic Mode.
15 2. ABORT.
16
17 USE CASE Provide System User Data via Standard Mode
18 1.1 Basic Flow

1. The system SENDS trace data TO the tester.
19 1. The system SENDS sensor data TO the tester.
20 2. The system SENDS calibration TO the tester.
21 3. The system SENDS error data TO the tester.
22 4. The system SENDS error trace data TO the tester.
23
24 USE CASE Provide System User Data via Diagnostic Mode
25 1.1 Basic Flow
26 1. The system SENDS the RAM data TO the tester.
27 2. The system SENDS the NVM data TO the tester.
28 3. The system SENDS the session response TO the tester.
29 4. The system SENDS the message length TO the tester.

For the variation point Method of
Providing Data included by the use
case Provide System User Data (i.e.,
(B6, B7)), we have one updated di-
agram decision in which the unse-
lected use case Provide System User
Data via Diagnostic Mode is se-
lected. The corresponding use case
specification is added (Lines 24-29 in
Table 3). A new specific alternative
flow is also generated for the inclu-
sion of the newly selected use case in
the specification of the use case Pro-
vide System User Data (Lines 12-15,
red-colored).

The specification decision changes
are about selecting optional alterna-
tive flows, optional steps and steps
with a variant order (e.g., the triples
(B11,B12,B14),(B11,B12,B15),
(B11,B12,B16), and (B11,B12,B17)
in Fig. 4(b)). The use case Provide
System User Data via Standard Mode
has two new steps in Lines 19 and 21
in Table 3 (i.e., (B11,B12,B14), and (B11,B12,B16) in Fig. 4(b)), while one of the
steps (red-colored, strikethrough step) is removed (i.e., (B11,B12,B15) in Fig. 4(b)).
The step number of one of the steps is changed (Line 22, blue-colored) due to the
change in the order of the steps with a variant order (i.e., (B11,B12,B17) in Fig. 4(b)).

7 Tool Support

We implemented our approach as an extension of PUMConf [24] which has been devel-
oped as an IBM DOORS Plug-in. PUMConf uses GATE (http://gate.ac.uk/),
an open source NLP framework, to annotate PL use case specifications to be used for
(re)configuring PS use case specifications. PUMConf relies upon: (i) IBM DOORS to
model PL use case specifications and (ii) Papyrus to model and save PL use case di-
agrams as a UML file. To load use cases from IBM DOORS, it uses DOORS Doc-
ument Exporter, an API that exports the DOORS content as text files. The recon-
figuration of PS use case models has been implemented as a Java application. The
DOORS eXtension Language (DXL) is employed to load the configured PS specifica-
tions into DOORS. PUMConf is approximately 25K lines of code, excluding comments
and third-party libraries. Additional details about PUMConf, including executable files
and a screencast covering motivations, are available on the tool’s website at https:
//sites.google.com/site/pumconf/.

http://gate.ac.uk/
https://sites.google.com/site/pumconf/
https://sites.google.com/site/pumconf/


8 Industrial Case Study

We evaluate our reconfiguration approach via reporting an industrial case study (STO).
Goal: Our goal was to assess, in an industrial context, the feasibility of using our ap-
proach. We assessed whether we could improve reuse and reduce manual effort by
preserving unimpacted parts of PS use case models, when possible, and their manually
assigned traces.
Study Context: STO was selected for the assessment of our approach since it was a rela-
tively new project at IEE with multiple potential customers requiring different features.
IEE provided their initial STO documentation, which contained a use case diagram,
use case specifications, and supplementary requirements specifications describing non-
functional requirements. To model the STO requirements according to our modeling
method, PUM, we first examined the initial STO documentation and then worked with
IEE engineers to build and iteratively refine our models [11] (see Table 4). Due to the
confidentiality concerns, we do not put the entire case study online. However, the reader
can download the sanitized example models from the tool’s website.

Table 4. Product Line Use Cases in the Case Study

# of use
cases

# of
variation

points

# of basic
flows

# of alter-
native
flows

# of steps
# of

condition
steps

Essential Use Cases 11 6 11 57 192 57
Variant Use Cases 13 1 13 131 417 130

Table 5. Configuration Results for the Selected Product

Product # of Selected Variant
Use Cases

# of Selected
Optional Steps

# of Selected
Optional Flows

# of Decided
Variant Order

P1 6 1 0 0

Table 6. Decision Change Scenarios

ID Change Scenario Explanation
S1 Update a diagram decision Unselecting selected use cases

S2 Update and delete diagram decisions
Unselecting selected use cases, removing
other decisions

S3 Update a diagram decision Selecting unselected use cases

S4 Update and add diagram decisions
Selecting unselected use cases,
implying other decisions

S5 Update a specification decision Selecting unselected optional steps
S6 Update a diagram decision Selecting unselected use cases
S7 Update a diagram decision Unselecting selected use cases
S8 Update a specification decision Updating the order of optional steps

Results and Analysis: By using PUMConf, we, together with the IEE analysts, config-
ured the PS use case models for four products selected among the STO products IEE
had already developed [15]. The IEE analysts made the decisions on the PL models
using the guidance provided by PUMConf. Among the four products, we chose one
product to be used for reconfiguration of PS models (see Table 5) because it was the
most recent one in the STO product family with a properly documented change history.
The IEE engineers identified 36 traces from the PS use case diagram and 278 traces



from the PS use case specifications to other software and hardware specifications as
well as to the customers’ requirements documents for external systems (see Fig. 7). We
considered eight change scenarios derived from the change history of the initial STO
documentation for the selected product (see Table 6).

Fig. 7. An Example Specification with a Trace in DOORS
Some change scenarios contain individual decision changes such as selecting uns-

elected use cases in a variation point, while some others contain a series of individual
changes applied sequentially (see S2 and S4). For instance, S2 starts with unselecting
Clear Error Status in Fig. 1, which automatically deletes the decision for the varia-
tion point Method of Clearing Error Status and implies another decision change, i.e.,
unselecting Store Error Status.

Table 7. Summary of the Reconfiguration of the PS Use Case Models for STO 
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 # of Initial Traces 278 265 218 231 278 287 298 278 

# of Deleted Traces 
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Traces After 
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0 0 13 47 9 11 0 0 

# of Preserved Traces 265 218 218 231 278 287 278 278 
% of Preserved Traces 95.3 82.2 100 100 100 100 93.2 100 

Table 7 provides a summary of the reconfiguration of the PS models for the change
scenarios. After each change scenario, we ran PUMConf and checked the preserved
and deleted traces. Our approach preserved all the traces for the unchanged parts of
the PS models, while only the traces for the deleted parts of the PS models were re-
moved. We had to manually assign traces only for the new parts of the PS models. In
terms of saving traceability effort while reconfiguring, we can look at the percentages
of traces from the use case diagram and the use case specifications that were preserved
over all the change scenarios. From Table 7, we can see that between 73% and 100%
(average ≈ 96%) of the use case diagram traces were preserved. Similarly, for the use



case specifications, trace reuse was between 82% and 100% (average ≈ 96%). We can
therefore conclude that our automated approach to incremental reconfiguration leads to
significant reuse and savings when updating traceability to other documents to account
for changed configuration decisions.
Discussion: We also had semi-structured interviews with IEE engineers to better assess
their perception. All interview participants agreed that the proposed approach could
help reduce, by a substantial amount, the manual effort in terms of preserving traces for
the unchanged parts of the PS use case models.
Threats to Validity: The main threat to the validity of our case study regards the gen-
eralizability of our conclusions. To mitigate this threat, we applied our approach to an
industrial case study that includes nontrivial use cases in an application domain with
many potential customers and numerous sources of variability. To limit threats to inter-
nal validity, we had many interviews with IEE engineers in the STO project to verify
the correctness and completeness of the PL models and the reconfigured PS models.

9 Conclusion

Product line requirements need to be configured for each product. This paper presents
an incremental reconfiguration approach for use case models in the context of product
lines. Our main motivation is to preserve the unimpacted parts of the Product Specific
(PS) use case models, when changing their configuration decisions, based on a careful
analysis of the Product Line (PL) use case models. Our main goal is to avoid man-
ual effort during reconfiguration due to the manual updating of traceability links from
the PS use case models to other documents and artifacts, a common practice and re-
quirement in industry. We therefore need to carefully determine which parts of the PS
models remain unchanged and we do so by carefully analysis decision dependencies
in PL models. We aim to incrementally reconfigure PS use case models by minimizing
their changes based on a careful impact analysis of changed decisions. We performed
a case study in the context of automotive embedded system development. The results
suggest that our approach is practical and provides significant savings with respect to
traceability updates during reconfiguration.

This work is an intermediate step to achieve our long term objective [25], i.e.,
change impact analysis and regression test selection in the context of use case-driven
development and testing. Changes can also emerge in variability aspects of product line
models, and they entail impact assessment on decisions for each individual product and
may require reconfiguration and regression test selection in several products. Our plan
for the next steps is to support change impact analysis to help analysts properly manage
changes in PL use case models.
Acknowledgments. Financial support was provided by IEE and FNR under grants
FNR/P10/03 and FNR10045046.
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17. W. Heider, R. Rabiser, and P. Grünbacher, “Facilitating the evolution of products in product
line engineering by capturing and replaying configuration decisions,” STTT, vol. 5, pp. 613–
630, 2012.

18. W. Heider, R. Rabiser, D. Lettner, and P. Grünbacher, “Using regression testing to analyze
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