Skip to main content

Classifying Metamodeling Methods for Evolutionary Multi-objective Optimization: First Results

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

Abstract

In many practical optimization problems, evaluation of objectives and constraints often involve computationally expensive procedures. To handle such problems, a metamodel-assisted approach is usually used to complete an optimization run in a reasonable amount of time. A metamodel is an approximate mathematical model of an objective or a constrained function which is constructed with a handful of solutions evaluated exactly. However, when comes to solving multi-objective optimization problems involving numerous constraints, it may be too much to metamodel each and every objective and constrained function independently. The cumulative effect of errors from each metamodel may turn out to be detrimental for the accuracy of the overall optimization procedure. In this paper, we propose a taxonomy of various metamodeling methodologies for multi-objective optimization and provide a comparative study by discussing advantages and disadvantages of each method. The first results presented in this paper are obtained using the well-known Kriging metamodeling approach. Based on our proposed taxonomy and an extensive literature search, we also highlight new and promising methods for multi-objective metamodeling algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassioli, A., Schoen, F.: Global optimization of expensive black box problems with a known lower bound. J. Glob. Optim. 57(1), 177–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Coelho, R.F., Lebon, J., Bouillard, P.: Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion. Struct. Multi. Optim. 43, 707–729 (2011)

    Article  MATH  Google Scholar 

  3. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  5. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  6. Deb, K., Abouhawwash, M.: A optimality theory based proximity measure for set based multi-objective optimization. IEEE Trans. Evol. Comput. 20(4), 515–528 (2016)

    Article  Google Scholar 

  7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Deb, K., Datta, R.: A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2010), pp. 165–172 (2010)

    Google Scholar 

  9. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  10. Díaz-Manríquez, A., Toscano, G., Barron-Zambrano, J.H., Tello-Leal, E.: A review of surrogate assisted multiobjective evolutionary algorithms. Comput. Intell. Neurosci. 2016, 1–14 (2016)

    Google Scholar 

  11. Horn, D., Wagner, T., Biermann, D., et al.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 64–78. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15934-8_5

    Google Scholar 

  12. Hussein, R., Deb, K.: A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. In: Proceedings of GECCO 2016. ACM Press (2016)

    Google Scholar 

  13. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Google Scholar 

  14. Jones, D., Schonlau, M., Welch, W.: Effcient global optimization of expensive. J. Glob. Optim. 13, 455–492 (1998)

    Article  MATH  Google Scholar 

  15. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  17. Le, M.N., Ong, Y.S., Menzel, S., et al.: Multi co-objective evolutionary optimization: cross surrogate augmentation for computationally expensive problems. In: Proceedings of CEC 2012, pp. 2871–2878. IEEE Press (2012)

    Google Scholar 

  18. Martínez, S.Z., Coello, C.A.C.: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems. In: Proceedings of Genetic and Evolutionary Computation Conference. ACM (2013)

    Google Scholar 

  19. Martínez-Frutos, J., Pérez, D.H.: Kriging-based infill sampling criterion for constraint handling in multi-objective optimization. J. Glob. Optim. 64, 97–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  21. Namura, N., Shimoyama, K., Obayashi, S.: Kriging surrogate model enhanced by coordinate transformation of design space based on eigenvalue decomposition. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 321–335. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15934-8_22

    Google Scholar 

  22. Quintero, L.V.S., Montano, A.A., Coello, C.A.C.: A Review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. Springer, Heidelberg (2010)

    Google Scholar 

  23. Shi, L., Rasheed, K.: A survey of fitness approximation methods applied in evolutionary algorithms. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Expensive Optimization Problems. Springer, Heidelberg (2010)

    Google Scholar 

  24. Sreekanth, J., Datta, B.: Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J. Hydrol. 393, 245–256 (2010)

    Article  Google Scholar 

  25. Steuer, R.E.: Multiple Criteria Optimization: Theory Computation and Application. Wiley, New York (1986)

    MATH  Google Scholar 

  26. Tsoukalas, I., Makropoulos, C.: Multiobjective optimisation on a budget: exploring surrogate modelling for robust multi-reservoir rules generation under hydrological uncertainty. Environ. Model. Softw. 69, 396–413 (2015)

    Article  Google Scholar 

  27. Verbeeck, D., Maes, F., De Grave, K., Blockeel, H.: Multi-Objective Optimization with Surrogate Trees. In: Proceedings of GECCO 2013, pp. 679–686. ACM Press (2013)

    Google Scholar 

  28. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y., Hu, S., Wu, J., Zhang, Y., Chen, L.: Multi-objective optimization of double suction centrifugal pump using kriging metamodels. Adv. Eng. Softw. 74, 16–26 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

Authors acknowledge the Matlab Kriging code provided by Dr. Cem Tutum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Deb, K., Hussein, R., Roy, P., Toscano, G. (2017). Classifying Metamodeling Methods for Evolutionary Multi-objective Optimization: First Results. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics