Skip to main content

First Investigations on Noisy Model-Based Multi-objective Optimization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Abstract

In many real-world applications concerning multi-objective optimization, the true objective functions are not observable. Instead, only noisy observations are available. In recent years, the interest in the effect of such noise in evolutionary multi-objective optimization (EMO) has increased and many specialized algorithms have been proposed. However, evolutionary algorithms are not suitable if the evaluation of the objectives is expensive and only a small budget is available. One popular solution is to use model-based multi-objective optimization (MBMO) techniques. In this paper, we present a first investigation on noisy MBMO. For this purpose we collect several noise handling strategies from the field of EMO and adapt them for MBMO algorithms. We compare the performance of those strategies in two benchmark situations: Firstly, we perform a purely artificial benchmark using homogeneous Gaussian noise. Secondly, we choose a setting from the field of machine learning, where the structure of the underlying noise is unknown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As per the 3\(\sigma \) rule, \(99.7\%\) of normal distributed random numbers are within \(\pm 3 \sigma \).

References

  1. Aizawa, A.N., Wah, B.W.: Scheduling of genetic algorithms in a noisy environment. Evol. Comput. 2(2), 97–122 (1994)

    Article  Google Scholar 

  2. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for meta-model validation with recommendations for evolutionary computation. Evol. Comput. 20(2), 249–275 (2012)

    Article  Google Scholar 

  3. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., Jones, Z.M.: mlr: machine learning in R. J. Mach. Learn. Res. 17(170), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bischl, B., Lang, M., Mersmann, O., Rahnenführer, J., Weihs, C.: BatchJobs and BatchExperiments: abstraction mechanisms for using R in batch environments. J. Stat. Softw. 64(11), 1–25 (2015)

    Article  Google Scholar 

  5. Bischl, B., Richter, J., Bossek, J., Horn, D., Lang, M.: mlrMBO: A Toolbox for Model-Based Optimization of Expensive Black-Box Functions. https://github.com/berndbischl/mlrMBO

  6. Breiderhoff, B., Bartz-Beielstein, T., Naujoks, B., Zaefferer, M., Fischbach, A., Flasch, O., Friese, M., Mersmann, O., Stork, J.: Simulation and optimization of cyclone dust separators. In: Proceedings of the 23rd Workshop on Computational Intelligence, pp. 177–195 (2013)

    Google Scholar 

  7. Dem\(\breve{\rm {s}}\)ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    Google Scholar 

  8. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  9. Fieldsend, J.E., Everson, R.M.: The rolling tide evolutionary algorithm: a multiobjective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput. 19(1), 103–117 (2015)

    Article  Google Scholar 

  10. Hernández-Lobato, D., Hernández-Lobato, J.M., Shah, A., Adams, R.P.: Predictive entropy search for multi-objective bayesian optimization. arXiv preprint arXiv:1511.05467 (2015)

  11. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning algorithms using model-based optimization. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (2016, accepted)

    Google Scholar 

  12. Horn, D., Demircioğlu, A., Bischl, B., Glasmachers, T., Weihs, C.: A comparative study on large scale kernelized support vector machines. Adv. Data Anal. Classif., 1–17 (2016)

    Google Scholar 

  13. Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 64–78 (2015)

    Google Scholar 

  14. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleijnen, J.P.C.: White noise assumptions revisited: regression metamodels and experimental designs in practice. In: Proceedings of the 38th Conference on Winter Simulation, pp. 107–117 (2006)

    Google Scholar 

  17. Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  18. Knowles, J., Corne, D., Reynolds, A.: Noisy multiobjective optimization on a budget of 250 evaluations. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 36–50 (2009)

    Google Scholar 

  19. Koch, P., Wagner, T., Emmerich, M.T., Bck, T., Konen, W.: Efficient multi-criteria optimization on noisy machine learning problems. Appl. Soft Comput. 29, 357–370 (2015)

    Article  Google Scholar 

  20. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited amount of evaluations using model-assisted \(\cal{S}\)-metric selection. In: Proceedings of the 10th International Conference on Parallel Problem Solving from Nature (PPSN), pp. 784–794 (2008)

    Google Scholar 

  21. Schiffner, J., Bischl, B., Lang, M., Richter, J., Jones, Z.M., Probst, P., Pfisterer, F., Gallo, M., Kirchhoff, D., Kühn, T., Thomas, J., Kotthoff, L.: mlr tutorial. CoRR abs/1609.06146 (2016)

    Google Scholar 

  22. Schutze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  23. Syberfeldt, A., Ng, A., John, R.I., Moore, P.: Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling. Eur. J. Oper. Res. 204(3), 533–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

  25. Zhan, J., Ma, Y., Zhu, L.: Multiobjective simulation optimization using stochastic kriging. In: Proceedings of the 22nd International Conference on Industrial Engineering and Engineering Management 2015, pp. 81–91 (2016)

    Google Scholar 

  26. Zhang, Q., Zhou, A., Zhaoy, S., Suganthany, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex and Nanyang Technological University, Technical report (2008)

    Google Scholar 

  27. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1, 32–49 (2011)

    Article  Google Scholar 

  28. Zuluaga, M., Krause, A., Püschel, M.: e-pal: an active learning approach to the multi-objective optimization problem. J. Mach. Learn. Res. 17(104), 1–32 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Horn, D., Dagge, M., Sun, X., Bischl, B. (2017). First Investigations on Noisy Model-Based Multi-objective Optimization. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics