Skip to main content

An Overview of Weighted and Unconstrained Scalarizing Functions

  • Conference paper
  • First Online:
Book cover Evolutionary Multi-Criterion Optimization (EMO 2017)

Abstract

Scalarizing functions play a crucial role in multi-objective evolutionary algorithms (MOEAs) based on decomposition and the R2 indicator, since they guide the population towards nearly optimal solutions, assigning a fitness value to an individual according to a predefined target direction in objective space. This paper presents a general review of weighted scalarizing functions without constraints, which have been proposed not only within evolutionary multi-objective optimization but also in the mathematical programming literature. We also investigate their scalability up to 10 objectives, using the test problems of Lamé Superspheres on the MOEA/D and MOMBI-II frameworks. For this purpose, the best suited scalarizing functions and their model parameters are determined through the evolutionary calibrator EVOCA. Our experimental results reveal that some of these scalarizing functions are quite robust and suitable for handling many-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A solution \(\mathbf {x} \in \mathcal {S}\) dominates a solution \(\mathbf {y} \in \mathcal {S}\) (\(\mathbf {x} \prec \mathbf {y}\)), if and only if \(\forall i \in \left\{ 1,\ldots ,m\right\} \), \(f_{i}(\mathbf {x}) \le f_{i}(\mathbf {y}) \) and \(\exists j \in \left\{ 1,\ldots ,m\right\} \), \(f_{j}(\mathbf {x}) < f_{j}(\mathbf {y})\).

  2. 2.

    \(POF :=\{\mathbf {F}(\mathbf {x}) \in \mathbb {R}^m :\mathbf {x} \in \mathcal {S}, \not {\exists } \mathbf {y} \in \mathcal {S}, \mathbf {y} \prec \mathbf {x} \}.\)

  3. 3.

    Let be \(\mathbf {x}, \mathbf {y} \in \mathcal {S}\). It is said that \(\mathbf {x}\) is Pareto optimal if there is no \(\mathbf {y}\) such that \(\mathbf {y} \prec \mathbf {x}\). \(\mathbf {x}\) is weakly Pareto optimal if there is no \(\mathbf {y}\) such that \(\forall i \in \left\{ 1,\ldots ,m\right\} \), \(f_{i}(\mathbf {y}) < f_{i}(\mathbf {x})\).

  4. 4.

    Although the French spelling Tchebycheff is the most preferred, the proper English transliteration is Chebyshev.

  5. 5.

    Available at http://computacion.cs.cinvestav.mx/~rhernandez.

References

  1. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, November 1999

    Google Scholar 

  2. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the \(R2\) indicator. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia, pp. 465–472. ACM Press, July 2012. ISBN: 978-1-4503-1177-9

    Google Scholar 

  3. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 13:1–13:35 (2015)

    Article  Google Scholar 

  4. Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)

    Article  Google Scholar 

  5. Fleischer, M.: The measure of Pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). doi:10.1007/3-540-36970-8_37

    Chapter  Google Scholar 

  6. Bringmann, K., Friedrich, T.: Don’t be greedy when calculating hypervolume contributions. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms. FOGA 2009, Orlando, pp. 103–112. ACM, January 2009

    Google Scholar 

  7. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19(4), 1694–1718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tutum, C.C., Deb, K.: A multimodal approach for evolutionary multi-objective optimization (MEMO): proof-of-principle results. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello Coello, C.A. (eds.) EMO 2015. LNCS, vol. 9018, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-15934-8_1

    Google Scholar 

  9. Ishibuchi, H., Akedo, N., Nojima, Y.: A study on the specification of a scalarizing function in MOEA/D for many-objective knapsack problems. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 231–246. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4_24

    Chapter  Google Scholar 

  10. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  11. Sato, H.: MOEA/D using constant-distance based neighbors designed for many-objective optimization. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2867–2874, May 2015

    Google Scholar 

  12. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12. Springer, New York (1998)

    MATH  Google Scholar 

  14. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spectr. 24(2), 193–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Santiago, A., Huacuja, H.J.F., Dorronsoro, B., Pecero, J.E., Santillan, C.G., Barbosa, J.J.G., Monterrubio, J.C.S.: A survey of decomposition methods for multi-objective optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds.) Recent Advances on Hybrid Approaches for Designing Intelligent Systems, vol. 547, pp. 453–465. Springer, Cham (2014). doi:10.1007/978-3-319-05170-3_31. ISBN: 978-3-319-05170-3

    Chapter  Google Scholar 

  16. Riff, M.C., Montero, E.: A new algorithm for reducing metaheuristic design effort. In: 2013 IEEE Congress on Evolutionary Computation, pp. 3283–3290, June 2013

    Google Scholar 

  17. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the R2 indicator for many-objective optimization. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. GECCO 2015, pp. 679–686. ACM, New York (2015)

    Google Scholar 

  19. Steuer, R.E., Choo, E.U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26(3), 326–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luque, M., Ruiz, A.B., Saborido, R., Marcenaro-Gutiérrez, O.D.: On the use of the \(L_p\) distance in reference point-based approaches for multiobjective optimization. Ann. Oper. Res. 235(1), 559–579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeleny, M.: Compromise Programming. Multiple Criteria Decision Making, pp. 262–301. University of South Carolina Press, Columbia (1973)

    Google Scholar 

  23. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, New York (2007). ISBN: 978-0-387-33254-3

    MATH  Google Scholar 

  24. Athan, T.W., Papalambros, P.Y.: A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27(2), 155–176 (1996)

    Article  Google Scholar 

  25. Lee, L.H., Chew, E.P., Yu, Q., Li, H., Liu, Y.: A study on multi-objective particle swarm optimization with weighted scalarizing functions. In: Proceedings of the 2014 Winter Simulation Conference. WSC 2014, Piscataway, pp. 3718–3729. IEEE Press (2014)

    Google Scholar 

  26. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Automat. Contr. 8(1), 59–60 (1963)

    Article  Google Scholar 

  27. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous use of different scalarizing functions in MOEA/D. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), Portland, pp. 519–526. ACM Press, 7–11 July 2010. ISBN: 978-1-4503-0072-8

    Google Scholar 

  28. Hughes, E.J.: Multiple single objective Pareto sampling. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, vol. 4, pp. 2678–2684. IEEE Press, December 2003

    Google Scholar 

  29. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Adaptation of scalarizing functions in MOEA/D: an adaptive scalarizing function-based multiobjective evolutionary algorithm. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 438–452. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01020-0_35

    Chapter  Google Scholar 

  30. Jin, Y., Okabe, T., Sendho, B.: Adapting weighted aggregation for multiobjective evolution strategies. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001). doi:10.1007/3-540-44719-9_7

    Chapter  Google Scholar 

  31. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003). doi:10.1007/3-540-36970-8_34

    Chapter  Google Scholar 

  32. Wang, R., Zhou, Z., Ishibuchi, H., Liao, T., Zhang, T.: Localized weighted sum method for many-objective optimization. IEEE Trans. Evol. Comput. PP(99) (2016). (to be published)

    Google Scholar 

  33. Murata, T., Taki, A.: Many-objective optimization for knapsack problems using correlation-based weighted sum approach. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 468–480. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01020-0_37

    Chapter  Google Scholar 

  34. Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 51–65. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70928-2_8

    Chapter  Google Scholar 

  35. Carpinelli, G., Caramia, P., Mottola, F., Proto, D.: Exponential weighted method and a compromise programming method for multi-objective operation of plug-in vehicle aggregators in microgrids. Int. J. Electr. Power Energy Syst. 56, 374–384 (2014)

    Article  Google Scholar 

  36. Li, D.: Convexification of a noninferior frontier. J. Optim. Theory Appl. 88(1), 177–196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, D., Yang, J.B., Biswal, M.: Quantitative parametric connections between methods for generating noninferior solutions in multiobjective optimization. Eur. J. Oper. Res. 117(1), 84–99 (1999)

    Article  MATH  Google Scholar 

  38. Dellino, G., Fedele, M., Meloni, C.: Dynamic objectives aggregation methods for evolutionary portfolio optimisation. A computational study. Int. J. BioInspir. Comput. 4(4), 258–270 (2012)

    Article  Google Scholar 

  39. Triantaphyllou, E.: Multi-criteria Decision Making Methods: A Comparative Study, vol. 44. Springer, New York (2000)

    Book  MATH  Google Scholar 

  40. Angelo, J.S., Barbosa, H.J.: On ant colony optimization algorithms for multiobjective problems. In: Ostfeld, A. (ed.) Ant Colony Optimization Methods and Applications, pp. 53–74. InTech, Cham (2011)

    Google Scholar 

  41. Bjornson, E., Jorswieck, E.A., Debbah, M., Ottersten, B.: Multiobjective signal processing optimization: the way to balance conflicting metrics in 5G systems. IEEE Signal Process. Mag. 31(6), 14–23 (2014)

    Article  Google Scholar 

  42. Kasprzak, E., Lewis, K.: Pareto analysis in multiobjective optimization using the collinearity theorem and scaling method. Struct. Multidiscip. Optim. 22(3), 208–218 (2001)

    Article  Google Scholar 

  43. Wang, R., Zhang, Q., Zhang, T.: Pareto adaptive scalarising functions for decomposition based algorithms. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello Coello, C.A. (eds.) EMO 2015. LNCS, vol. 9018, pp. 248–262. Springer, Cham (2015). doi:10.1007/978-3-319-15934-8_17

    Google Scholar 

  44. Bowman Jr., V.J.: On the relationship of the Tchebyche norm and the efficient frontier of multiple-criteria objectives. In: Thiriez, H., Zionts, S. (eds.) Multiple Criteria Decision Making. LNEMS, vol. 130, pp. 76–86. Springer, Heidelberg (1973). doi:10.1007/978-3-642-87563-2_5

    Chapter  Google Scholar 

  45. Giagkiozis, I., Fleming, P.J.: Methods for multi-objective optimization: an analysis. Inf. Sci. 293, 338–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hernández Gómez, R., Coello Coello, C.A.: MOMBI: a new metaheuristic for many-objective optimization based on the \(R2\) indicator. In: IEEE Congress on Evolutionary Computation (CEC 2013), Cancún, pp. 2488–2495. IEEE Press, 20–23 June 2013. ISBN: 978-1-4799-0454-9

    Google Scholar 

  47. Ralphs, T.K., Saltzman, M.J., Wiecek, M.M.: An improved algorithm for solving biobjective integer programs. Ann. Oper. Res. 147(1), 43–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kaliszewski, I.: A modified weighted Tchebycheff metric for multiple objective programming. Comput. Oper. Res. 14(4), 315–323 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. LNE, vol. 177, pp. 468–486. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  50. Derbel, B., Brockhoff, D., Liefooghe, A.: Force-based cooperative search directions in evolutionary multi-objective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 383–397. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37140-0_30

    Chapter  Google Scholar 

  51. Yuan, Y., Xu, H., Wang, B., Zhang, B., Yao, X.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2016)

    Article  Google Scholar 

  52. Saborido, R., Ruiz, A.B., Luque, M.: Global WASF-GA: an evolutionary algorithm in multiobjective optimization to approximate the whole Pareto optimal front. Evol. Comput. 1–40 (2017, in press)

    Google Scholar 

  53. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, S., Jiang, S., Jiang, Y.: Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft Comput. 1–15 (2017, in press)

    Google Scholar 

  55. Sato, H.: Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Genetic and Evolutionary Computation Conference (GECCO), Vancouver, pp. 645–652. ACM Press, 12–16 July 2014. ISBN: 978-1-4503-2662-9

    Google Scholar 

  56. Kasimbeyli, R.: A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J. Optim. 20(3), 1591–1619 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Erozan, İ., Torkul, O., Ustun, O.: Proposal of a nonlinear multi-objective genetic algorithm using conic scalarization to the design of cellular manufacturing systems. Flex. Serv. Manuf. J. 27(1), 30–57 (2015)

    Article  Google Scholar 

  58. Hughes, E.J.: MSOPS-II: a general-purpose many-objective optimiser. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 3944–3951. IEEE Press, September 2007

    Google Scholar 

  59. Emmerich, M.T.M., Deutz, A.H.: Test problems based on Lamé superspheres. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70928-2_68

    Chapter  Google Scholar 

  60. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from CONACyT project no. 221551 and PCCI140054 CONACYT/CONICYT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Hernández Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pescador-Rojas, M., Hernández Gómez, R., Montero, E., Rojas-Morales, N., Riff, MC., Coello Coello, C.A. (2017). An Overview of Weighted and Unconstrained Scalarizing Functions. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics