Skip to main content

Clustering Symmetric Positive Definite Matrices on the Riemannian Manifolds

  • Conference paper
  • First Online:
  • 3098 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Abstract

Using structured features such as symmetric positive definite (SPD) matrices to encode visual information has been found to be effective in computer vision. Traditional pattern recognition methods developed in the Euclidean space are not suitable for directly processing SPD matrices because they lie in Riemannian manifolds of negative curvature. The main contribution of this paper is the development of a novel framework, termed Riemannian Competitive Learning (RCL), for SPD matrices clustering. In this framework, we introduce a conscious competition mechanism and develop a robust algorithm termed Riemannian Frequency Sensitive Competitive Learning (rFSCL). Compared with existing methods, rFSCL has three distinctive advantages. Firstly, rFSCL inherits the online nature of competitive learning making it capable of handling very large data sets. Secondly, rFSCL inherits the advantage of conscious competitive learning which means that it is less sensitive to the initial values of the cluster centers and that all clusters are fully utilized without the “dead unit” problem associated with many clustering algorithms. Thirdly, as an intrinsic Riemannian clustering method, rFSCL operates along the geodesic on the manifold and the algorithms is completely independent of the choice of local coordinate systems. Extensive experiments show its superior performance compared with other state of the art SPD matrices clustering methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Please note that an equivalent form of affine-invariant Riemannian metric (AIRM) is given in [19]. Affine-invariant Riemannian metric was first used to calculate the geodesic distance of two SPD matrices in [26] and Pennec et al. promoted AIRM as a computing framework in [18].

  2. 2.

    The experiments are conducted on the simulated dataset.

  3. 3.

    The code is downloaded from http://www.robots.ox.ac.uk/~sadeep/.

  4. 4.

    The code is downloaded from http://www.cise.ufl.edu/~salehian/Softwares.html.

References

  1. Goh, A., Vidal, R.: Clustering and dimensionality reduction on Riemannian manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  2. Chiang, M.C., Dutton, R.A., Hayashi, K.M., Lopez, O.L., Aizenstein, H.J., Toga, A.W., Becker, J.T., Thompson, P.M.: \(3d\) pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. Neuroimage 34, 44–60 (2007)

    Article  Google Scholar 

  3. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). doi:10.1007/11744047_45

    Chapter  Google Scholar 

  4. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the log-Euclidean framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005). doi:10.1007/11566465_15

    Chapter  Google Scholar 

  5. Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.: Jensen-bregman logdet divergence with application to efficient similarity search for covariance matrices. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2161–2174 (2013)

    Article  Google Scholar 

  6. Chaudhry, R., Ivanov, Y.: Fast approximate nearest neighbor methods for non-euclidean manifolds with applications to human activity analysis in videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 735–748. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_53

    Chapter  Google Scholar 

  7. Malcolm, J., Rathi, Y., Tannenbaum, A.: A graph cut approach to image segmentation in tensor space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

    Google Scholar 

  8. Zheng, L., Lei, Y., Qiu, G., Huang, J.: Near-duplicate image detection in a visually salient Riemannian space. IEEE Trans. Inf. Forensics Secur. 7, 1578–1593 (2012)

    Article  Google Scholar 

  9. Alavi, A., Wiliem, A., Zhao, K., Lovell, B., Sanderson, C.: Random projections on manifolds of symmetric positive definite matrices for image classification. In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 301–308 (2014)

    Google Scholar 

  10. Zhang, S., Kasiviswanathan, S., Yuen, P., Harandi, M.: Online dictionary learning on symmetric positive definite manifolds with vision applications. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 3165–3173 (2015)

    Google Scholar 

  11. Bridson, M.R.: Metric Spaces of Non-Positive Curvature. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  12. Tyagi, A., Davis, J.W.: A recursive filter for linear systems on riemannian manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. Dryden, I., Koloydenko, A., Zhou, D.: Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3, 1102–1123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80 (2013)

    Google Scholar 

  15. Salehian, H., Cheng, G., Vemuri, B., Ho, J.: Recursive estimation of the stein center of SPD matrices and its applications. In: IEEE International Conference on Computer Vision (ICCV), pp. 1793–1800 (2013)

    Google Scholar 

  16. Rathi, Y., Tannenbaum, A., Michailovich, O.: Segmenting images on the tensor manifold. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

    Google Scholar 

  17. Sivalingam, R., Morellas, V., Boley, D., Papanikolopoulos, N.: Metric learning for semi-supervised clustering of region covariance descriptors. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–8 (2009)

    Google Scholar 

  18. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006)

    Article  MATH  Google Scholar 

  19. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  20. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sra, S.: Positive definite matrices and the s-divergence (2013). http://people.kyb.tuebingen.mpg.de/suvrit/

  22. Zhao, K., Alavi, A., Wiliem, A., Lovell, B.C.: Efficient clustering on Riemannian manifolds: a kernelised random projection approach. Pattern Recogn. 51, 333–345 (2016)

    Article  Google Scholar 

  23. Hidot, S., Saint-Jean, C.: An expectation-maximization algorithm for the Wishart mixture model: application to movement clustering. Pattern Recogn. Lett. 31, 2318–2324 (2010)

    Article  Google Scholar 

  24. Cherian, A., Morellas, V., Papanikolopoulos, N., Bedros, S.J.: Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3417–3424 (2011)

    Google Scholar 

  25. Hiai, F., Petz, D.: Riemannian metrics on positive definite matrices related to means. Linear Algebra Appl. 430, 3105–3130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frstner, W., Moonen, B.: A metric for covariance matrices. Technical report, Stuttgart University (1999)

    Google Scholar 

  27. Du, K.L.: Clustering: a neural network approach. Neural Netw. 23, 89–107 (2010)

    Article  Google Scholar 

  28. Ahalt, S.C., Krishnamurthy, A.K., Chen, P., Melton, D.E.: Competitive learning algorithms for vector quantization. Neural Netw. 3, 277–290 (1990)

    Article  Google Scholar 

  29. Banerjee, A., Ghosh, J.: Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres. IEEE Trans. Neural Netw. 15, 702–719 (2004)

    Article  Google Scholar 

  30. Galanopoulos, A.S., Moses, R.L., Ahalt, S.C.: Diffusion approximation of frequency sensitive competitive learning. IEEE Trans. Neural Netw. 8, 1026–1030 (1997)

    Article  Google Scholar 

  31. Qiu, G., Duana, J., Finlaysonb, G.D.: Learning to display high dynamic range images. Pattern Recogn. 40, 2641–2655 (2007)

    Article  Google Scholar 

  32. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994)

    Article  Google Scholar 

  33. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Proceedings of the Tenth IEEE International Conference on Computer Vision-ICCV 2005, vol. 2, pp. 1597–1604. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  34. Dollár, P.: Piotr’s image and video matlab toolbox (pmt) (2013). http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

  35. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-409–II-415 (2003)

    Google Scholar 

Download references

Acknowledgement

Part of this paper is supported by NSFC (61332012, 61300205), Shenzhen R&D Program (JCYJ20160328144421330, GJHZ20140418191518323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zheng, L., Qiu, G., Huang, J. (2017). Clustering Symmetric Positive Definite Matrices on the Riemannian Manifolds. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics