Skip to main content

Subspace Learning Based Low-Rank Representation

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

Abstract

Subspace segmentation has been a hot topic in the past decades. Recently, spectral-clustering based methods arouse broad interests, however, they usually consider the similarity extraction in the original space. In this paper, we propose subspace learning based low-rank representation to learn a subspace favoring the similarity extraction for the low-rank representation. The process of learning the subspace and achieving the representation is conducted simultaneously and thus they can benefit from each other. After extending the linear projection to nonlinear mapping, our method can handle manifold clustering problem which is a general case of subspace segmentation. Moreover, our method can also be applied in the problem of recognition by adding suitable penalty on the learned subspace. Extensive experimental results confirm the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soltanolkotabi, M., Candès, E.J.: A geometric analysis of subspace clustering with outliers. Ann. Stat. 40, 2195–2238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vidal, R.: Subspace clustering. IEEE Sig. Process. Mag. 28, 52–68 (2011)

    Article  Google Scholar 

  3. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  4. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  5. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013)

    Article  Google Scholar 

  6. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2765–2781 (2013)

    Article  Google Scholar 

  7. Wang, S., Yuan, X., Yao, T., Yan, S., Shen, J.: Efficient subspace segmentation via quadratic programming. In: AAAI (2011)

    Google Scholar 

  8. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  9. Lu, C., Feng, J., Lin, Z., Yan, S.: Correlation adaptive subspace segmentation by trace lasso. In: ICCV (2013)

    Google Scholar 

  10. Hu, H., Lin, Z., Feng, J., Zhou, J.: Smooth representation clustering. In: CVPR (2014)

    Google Scholar 

  11. Tang, K., Liu, R., Su, Z., Zhang, J.: Structure-constrained low-rank representation. IEEE Trans. Neural Netw. Learn. Syst. 25, 2167–2179 (2014)

    Article  Google Scholar 

  12. Tang, K., Dunson, D.B., Su, Z., Liu, R., Zhang, J., Dong, J.: Subspace segmentation by dense block and sparse representation. Neural Netw. 75, 66–76 (2016)

    Article  Google Scholar 

  13. Zhang, X.: Matrix Analysis and Applications. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  14. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: ICCV (2011)

    Google Scholar 

  15. Patel, V.M., Nguyen, H.V., Vidal, R.: Latent space sparse subspace clustering. In: ICCV (2013)

    Google Scholar 

  16. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)

    Article  Google Scholar 

  17. Souvenir, R., Pless, R.: Manifold clustering. In: ICCV (2005)

    Google Scholar 

  18. Wang, Y., Jiang, Y., Wu, Y., Zhou, Z.-H.: Multi-manifold clustering. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS (LNAI), vol. 6230, pp. 280–291. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15246-7_27

    Chapter  Google Scholar 

  19. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical report, UILU-ENG-09-2215 (2009)

    Google Scholar 

  20. Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, K., Zhang, J., Su, Z., Dong, J.: Bayesian low-rank and sparse nonlinear rerpesentation for manifold clustering. Neural Process. Lett. 44(3), 1–15 (2015)

    Google Scholar 

  22. Zhao, D., Lin, Z., Tang, X.: Classification via semi-Riemannian spaces. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  23. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27, 1945–1959 (2005)

    Article  Google Scholar 

  24. Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR (2007)

    Google Scholar 

  25. Ho, J., Yang, M.H., Lim, J., Lee, K.C., Kriegman, D.J.: Clustering appearances of objects under varying illumination conditions. In: CVPR (2003)

    Google Scholar 

  26. Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27, 684–698 (2005)

    Article  Google Scholar 

  27. Nasihatkon, B., Hartley, R.I.: Graph connectivity in sparse subspace clustering. In: CVPR, pp. 2137–2144 (2011)

    Google Scholar 

  28. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical report, CUCS-005-96 (1996)

    Google Scholar 

  29. Yong, W., Yuan, J., Yi, W., Zhou, Z.: Spectral clustering on multiple manifolds. IEEE Trans. Neural Netw. Learn. Syst. 22, 1149–1161 (2011)

    Article  Google Scholar 

  30. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  31. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  32. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)

    Article  Google Scholar 

  33. Liu, R., Lin, Z., Su, Z., Tang, K.: Feature extraction by learning lorentzian metric tensor and its extensions. Pattern Recogn. 43, 3298–3306 (2010)

    Article  MATH  Google Scholar 

  34. Harandi, M.T., Sanderson, C., Shirazi, S.A., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: CVPR (2011)

    Google Scholar 

  35. Wang, W., Wang, R., Huang, Z., Shan, S., Chen, X.: Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. In: CVPR (2015)

    Google Scholar 

  36. Wang, R., Guo, H., Davis, L.S., Dai, Q.: Covariance discriminative learning: a natural and efficient approach to image set classification. In: CVPR (2012)

    Google Scholar 

  37. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404 (2000)

    Article  Google Scholar 

  38. Kim, M., Kumar, S., Pavlovic, V., Rowley, H.A.: Face tracking and recognition with visual constraints in real-world videos. In: CVPR (2008)

    Google Scholar 

  39. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR (2003)

    Google Scholar 

  40. Rosipal, R., Trejo, L.J.: Kernel partial least squares regression in reproducing Kernel Hilbert space. J. Mach. Learn. Res. 2, 97–123 (2001)

    MATH  Google Scholar 

Download references

Acknowledgement

The work of K. Tang was supported by the Educational Commission of Liaoning Province, China (No. L201683662). The work of Z. Su was supported by the National Natural Science Foundation of China (No. 61572099), National Science and Technology Major Project (No. 2014ZX04001011, ZX20140419). The work of W. Jiang was supported by the Natural Science Foundation of Liaoning Province, China (No. 60875029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kewei Tang or Zhixun Su .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 124 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, K., Liu, X., Su, Z., Jiang, W., Dong, J. (2017). Subspace Learning Based Low-Rank Representation. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics