Skip to main content

Analysis on the Dropout Effect in Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10112))

Abstract

Regularizing neural networks is an important task to reduce overfitting. Dropout [1] has been a widely-used regularization trick for neural networks. In convolutional neural networks (CNNs), dropout is usually applied to the fully connected layers. Meanwhile, the regularization effect of dropout in the convolutional layers has not been thoroughly analyzed in the literature. In this paper, we analyze the effect of dropout in the convolutional layers, which is indeed proved as a powerful generalization method. We observed that dropout in CNNs regularizes the networks by adding noise to the output feature maps of each layer, yielding robustness to variations of images. Based on this observation, we propose a stochastic dropout whose drop ratio varies for each iteration. Furthermore, we propose a new regularization method which is inspired by behaviors of image filters. Rather than randomly drop the activation, we selectively drop the activations which have high values across the feature map or across the channels. Experimental results validate the regularization performance of selective max-drop and stochastic dropout is competitive to the dropout or spatial dropout [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Caffe implementation of dropout scales up the activations at training time instead of scaling down them at test time unlike the original dropout paper [1].

References

  1. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  3. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 (2013)

  4. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: Proceedings of the 30th International Conference on Machine Learning, pp. 1319–1327 (2013)

    Google Scholar 

  5. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  6. Graham, B.: Spatially-sparse convolutional neural networks. arXiv preprint arXiv:1409.6070 (2014)

  7. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference on Machine Learning (ICML 2013), pp. 1058–1066 (2013)

    Google Scholar 

  8. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  9. Lee, C.Y., Gallagher, P.W., Tu, Z.: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree. arXiv preprint arXiv:1509.08985 (2015)

  10. Wu, H., Gu, X.: Towards dropout training for convolutional neural networks. Neural Netw. 71, 1–10 (2015)

    Article  Google Scholar 

  11. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, I., Kaiser, L., Kurach, K., Martens, J.: Adding gradient noise improves learning for very deep networks. arXiv preprint arXiv:1511.06807 (2015)

  12. Audhkhasi, K., Osoba, O., Kosko, B.: Noise-enhanced convolutional neural networks. Neural Netw. 78, 15–23 (2016)

    Article  Google Scholar 

  13. Gulcehre, C., Moczulski, M., Denil, M., Bengio, Y.: Noisy activation functions. arXiv preprint arXiv:1603.00391 (2016)

  14. Huang, Y., Sun, X., Lu, M., Xu, M.: Channel-max, channel-drop and stochastic max-pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–17 (2015)

    Google Scholar 

  15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30, p. 1 (2013)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  19. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  20. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: CAFFE: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, vol. 2011, p. 4 (2011)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  24. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  25. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, pp. 562–570 (2015)

    Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Research Program through the National Research Foundation of Korea (NRF-2016R1A1A1A05005442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nojun Kwak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Park, S., Kwak, N. (2017). Analysis on the Dropout Effect in Convolutional Neural Networks. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10112. Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54184-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54183-9

  • Online ISBN: 978-3-319-54184-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics