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Abstract. Single image super-resolution (SR) is an ill-posed problem
which aims to recover high-resolution (HR) images from their low-resolution
(LR) observations. The crux of this problem lies in learning the complex
mapping between low-resolution patches and the corresponding high-
resolution patches. Prior arts have used either a mixture of simple re-
gression models or a single non-linear neural network for this propose.
This paper proposes the method of learning a mixture of SR infer-
ence modules in a unified framework to tackle this problem. Specifi-
cally, a number of SR inference modules specialized in different image
local patterns are first independently applied on the LR image to ob-
tain various HR estimates, and the resultant HR estimates are adap-
tively aggregated to form the final HR image. By selecting neural net-
works as the SR inference module, the whole procedure can be incor-
porated into a unified network and be optimized jointly. Extensive ex-
periments are conducted to investigate the relation between restoration
performance and different network architectures. Compared with other
current image SR approaches, our proposed method achieves state-of-
the-arts restoration results on a wide range of images consistently while
allowing more flexible design choices. The source codes are available in
http://www.ifp.illinois.edu/~dingliu2/accv2016.

1 Introduction

Single image super-resolution (SR) is usually cast as an inverse problem of re-
covering the original high-resolution (HR) image from the low-resolution (LR)
observation image. This technique can be utilized in the applications where high
resolution is of importance, such as photo enhancement, satellite imaging and
SDTV to HDTV conversion [1]. The main difficulty resides in the loss of much
information in the degradation process. Since the known variables from the LR
image is usually greatly outnumbered by that from the HR image, this problem
is a highly ill-posed problem.

A large number of single image SR methods have been proposed in the lit-
erature, including interpolation based method [2], edge model based method [3]
and example based method [4,5,6,7,8,9]. Since the former two methods usually
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suffer the sharp drop in restoration performance with large upscaling factors,
the example based method draws great attention from the community recently.
It usually learns the mapping from LR images to HR images in a patch-by-patch
manner, with the help of sparse representation [6,10], random forest [11] and so
on. The neighbor embedding method [4,7] and neural network based method [8]
are two representatives of this category.

Neighbor embedding is proposed in [4,12] which estimates HR patches as a
weighted average of local neighbors with the same weights as in LR feature space,
based on the assumption that LR/HR patch pairs share similar local geometry
in low-dimensional nonlinear manifolds. The coding coefficients are first acquired
by representing each LR patch as a weighted average of local neighbors, and then
the HR counterpart is estimated by the multiplication of the coding coefficients
with the corresponding training HR patches. Anchored neighborhood regression
(ANR) is utilized in [7] to improve the neighbor embedding methods, which
partitions the feature space into a number of clusters using the learned dictionary
atoms as a set of anchor points. A regressor is then learned for each cluster of
patches. This approach has demonstrated superiority over the counterpart of
global regression in [7]. Other variants of learning a mixture of SR regressors
can be found in [13,14,15].

Recently, neural network based models have demonstrated the strong ca-
pability for single image SR [16,8,17], due to its large model capacity and the
end-to-end learning strategy to get rid of hand-crafted features. Cui et al. [16]
propose using a cascade of stacked collaborative local autoencoders for robust
matching of self-similar patches, in order to increase the resolution of inputs
gradually. Dong et al. [8] exploit a fully convolutional neural network (CNN) to
approximate the complex non-linear mapping between the LR image and the HR
counterpart. A neural network that closely mimics the sparse coding approach
for image SR is designed by Wang et al [17,18]. Kim et al proposes a very deep
neural network with residual architecture to exploit contextual information over
large image regions [19].

In this paper, we propose a method to combine the merits of the neighbor-
hood embedding methods and the neural network based methods via learning a
mixture of neural networks for single image SR. The entire image signal space
can be partitioned into several subspaces, and we dedicate one SR module to
the image signals in each subspace, the synergy of which allows a better capture
of the complex relation between the LR image signal and its HR counterpart
than the generic model. In order to take advantage of the end-to-end learning
strategy of neural network based methods, we choose neural networks as the
SR inference modules and incorporate these modules into one unified network,
and design a branch in the network to predict the pixel-level weights for HR
estimates from each SR module before they are adaptively aggregated to form
the final HR image.

A systematic analysis of different network architectures is conducted with the
focus on the relation between SR performance and various network architectures
via extensive experiments, where the benefit of utilizing a mixture of SR models
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Fig. 1. The overview of our proposed method. It consists of a number of SR
inference modules and an adaptive weight module. Each SR inference module is
dedicated to inferencing a certain class of image local patterns, and is indepen-
dently applied on the LR image to predict one HR estimate. These estimates
are adaptively combined using pixel-wise aggregation weights from the adaptive
weight module in order to form the final HR image.

is demonstrated. Our proposed approach is contrasted with other current popu-
lar approaches on a large number of test images, and achieves state-of-the-arts
performance consistently along with more flexibility of model design choices.

The paper is organized as follows. The proposed method is introduced and
explained in detail in Section 2. Section 3 describes our experiments, in which
we analyze thoroughly different network architectures and compare the perfor-
mance of our method with other current SR methods both quantitatively and
qualitatively. Finally in Section 4 we conclude the paper.

2 Proposed Method

2.1 Overview

First we give the overview of our method. The LR image serves as the input
to our method. There are a number of SR inference modules {Bi}Ni=1 in our
method. Each of them, Bi, is dedicated to inferencing a certain class of image
patches, and applied on the LR input image to predict a HR estimate. We also
devise an adaptive weight module, T , to adaptively combine at the pixel-level
the HR estimates from SR inference modules. When we select neural networks
as the SR inference modules, all the components can be incorporated into a
unified neural network and be jointly learned. The final estimated HR image
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is adaptively aggregated from the estimates of all SR inference modules. The
overview of our method is shown in Figure 1.

2.2 Network Architecture

SR Inference Module : Taking the LR image as input, each SR inference
module is designed to better capture the complex relation between a certain class
of LR image signals and its HR counterpart, while predicting a HR estimate. For
the sake of inference accuracy, we choose as the SR inference module a recent
sparse coding based network (SCN) in [17], which implicitly incorporates the
sparse prior into neural networks via employing the learned iterative shrinkage
and thresholding algorithm (LISTA), and closely mimics the sparse coding based
image SR method [20]. The architecture of SCN is shown in Figure 2. Note that
the design of the SR inference module is not limited to SCN, and all other neural
network based SR models, e.g. SRCNN [8], can work as the SR inference module
as well. The output of Bi serves as an estimate to the final HR frame.

Fig. 2. The network architecture of SCN [17], which serves as the SR inference
module in our method.

Adaptive Weight Module : The goal of this module is to model the selectivity
of the HR estimates from every SR inference module. We propose assigning
pixel-wise aggregation weights of each HR estimate, and again the design of this
module is open to any operation in the field of neural networks. Taking into
account the computation cost and efficiency, we utilize only three convolutional
layers for this module, and ReLU is applied on the filter responses to introduce
non-linearity. This module finally outputs the pixel-level weight maps for all the
HR estimates.

Aggregation : Each SR inference module’s output is pixel-wisely multiplied
with its corresponding weight map from the adaptive weight module, and then
these products are summed up to form the final estimated HR frame. If we
use y to denote the LR input image, a function W (y; θw) with parameters θw to
represent the behavior of the adaptive weight module, and a function FBi

(y; θBi
)

with parameters θBi
to represent the output of SR inference module Bi, the final

estimated HR image F (y; Θ) can be expressed as
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F (y; Θ) =

N∑
i=1

Wi(y; θw)� FBi
(y; θBi

), (1)

where � denotes the point-wise multiplication.

2.3 Training Objective

In training, our model tries to minimize the loss between the target HR frame
and the predicted output, as

min
Θ

∑
j

‖F (yj ; Θ)− xj‖22, (2)

where F (y; Θ) represents the output of our model, xj is the j-th HR image and
yj is the corresponding LR image; Θ is the set of all parameters in our model.

If we plug Eqn. 1 into Eqn. 2, the cost function then can be expanded as:

min
θw,{θBi

}Ni=1

∑
j

‖
N∑
i=1

Wi(yj ; θw)� FBi
(yj ; θBi

)− xj‖22. (3)

3 Experiments

3.1 Data Sets and Implementation Details

We conduct experiments following the protocols in [7]. Different learning based
methods use different training data in the literature. We choose 91 images pro-
posed in [6] to be consistent with [13,11,17]. These training data are augmented
with translation, rotation and scaling, providing approximately 8 million training
samples of 56× 56 pixels.

Our model is tested on three benchmark data sets, which are Set5 [12], Set14
[21] and BSD100 [22]. The ground truth images are downscaled by bicubic in-
terpolation to generate LR/HR image pairs for both training and testing.

Following the convention in [7,17], we convert each color image into the
YCbCr colorspace and only process the luminance channel with our model, and
bicubic interpolation is applied to the chrominance channels, because the visual
system of human is more sensitive to details in intensity than in color.

Each SR inference module adopts the network architecture of SCN, while the
filters of all three convolutional layers in the adaptive weight module have the
spatial size of 5× 5 and the numbers of filters of three layers are set to be 32, 16
and N , which is the number of SR inference modules.

Our network is implemented using Caffe [23] and is trained on a machine with
12 Intel Xeon 2.67GHz CPUs and 1 Nvidia TITAN X GPU. For the adaptive
weight module, we employ a constant learning rate of 10−5 and initialize the
weights from Gaussian distribution, while we stick to the learning rate and the
initialization method in [17] for the SR inference modules. The standard gradient
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descent algorithm is employed to train our network with a batch size of 64 and
the momentum of 0.9.

We train our model for the upscaling factor of 2. For larger upscaling factors,
we adopt the model cascade technique in [17] to apply ×2 models multiple times
until the resulting image reaches at least as large as the desired size. The resulting
image is downsized via bicubic interpolation to the target resolution if necessary.

Table 1. PSNR (in dB) and SSIM comparisons on Set5, Set14 and BSD100
for ×2, ×3 and ×4 upscaling factors among various network architectures. Red
indicates the best and blue indicates the second best performance.

Benchmark
SCN MSCN-2 MSCN-4

(n = 128) (n = 64) (n = 32)

Set5
×2 36.93 / 0.9552 37.00 / 0.9558 36.99 / 0.9559
×3 33.10 / 0.9136 33.15 / 0.9133 33.13 / 0.9130
×4 30.86 / 0.8710 30.92 / 0.8709 30.93 / 0.8712

Set14
×2 32.56 / 0.9069 32.70 / 0.9074 32.72 / 0.9076
×3 29.41 / 0.8235 29.53 / 0.8253 29.56 / 0.8256
×4 27.64 / 0.7578 27.76 / 0.7601 27.79 / 0.7607

BSD100
×2 31.40 / 0.8884 31.54 / 0.8913 31.56 / 0.8914
×3 28.50 / 0.7885 28.56 / 0.7920 28.59 / 0.7926
×4 27.03 / 0.7161 27.10 / 0.7207 27.13 / 0.7216

3.2 SR Performance vs. Network Architecture

In this section we investigate the relation between various numbers of SR in-
ference modules and SR performance. For the sake of our analysis, we increase
the number of inference modules as we decrease the module capacity of each
of them, so that the total model capacity is approximately consistent and thus
the comparison is fair. Since the chosen SR inference module, SCN [17], closely
mimics the sparse coding based SR method, we can reduce the module capacity
of each inference module by decreasing the embedded dictionary size n (i.e. the
number of filters in SCN), for sparse representation. We compare the following
cases:

– one inference module with n = 128, which is equivalent to the structure of
SCN in [17], denoted as SCN (n=128). Note that there is no need to include
the adaptive weight module in this case.

– two inference modules with n = 64, denoted as MSCN-2 (n=64).
– four inference modules with n = 32, denoted as MSCN-4 (n=32).

The average Peak Signal-to-Noise Ratio (PSNR) and structural similarity (SSIM)
[24] are measured to quantitatively compare the SR performance of these models
over Set5, Set14 and BSD100 for various upscaling factors (×2,×3,×4), and the
results are displayed in Table 1.
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Table 2. PSNR (SSIM) comparison on three test data sets for various upscaling
factors among different methods. The best performance is indicated in red and
the second best performance is shown in blue. The performance gain of our best
model over all the other models’ best is shown in the last row.

Data Set Set5 Set14 BSD100

Upscaling ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

A+ [13]
36.55 32.59 30.29 32.28 29.13 27.33 31.21 28.29 26.82

(0.9544) (0.9088) (0.8603) (0.9056) (0.8188) (0.7491) (0.8863) (0.7835) (0.7087)

SRCNN [8]
36.66 32.75 30.49 32.45 29.30 27.50 31.36 28.41 26.90

(0.9542) (0.9090) (0.8628) (0.9067) (0.8215) (0.7513) (0.8879) (0.7863) (0.7103)

RFL [11]
36.54 32.43 30.14 32.26 29.05 27.24 31.16 28.22 26.75

(0.9537) (0.9057) (0.8548) (0.9040) (0.8164) (0.7451) (0.8840) (0.7806) (0.7054)

SelfEx [9]
36.49 32.58 30.31 32.22 29.16 27.40 31.18 28.29 26.84

(0.9537) (0.9093) (0.8619) (0.9034) (0.8196) (0.7518) (0.8855) (0.7840) (0.7106)

SCN [17]
36.93 33.10 30.86 32.56 29.41 27.64 31.40 28.50 27.03

(0.9552) (0.9144) (0.8732) (0.9074) (0.8238) (0.7578) (0.8884) (0.7885) (0.7161)

MSCN-4
37.16 33.33 31.08 32.85 29.65 27.87 31.65 28.66 27.19

(0.9565) (0.9155) (0.8740) (0.9084) (0.8272) (0.7624) (0.8928) (0.7941) (0.7229)

Our 0.23 0.23 0.22 0.29 0.24 0.23 0.25 0.16 0.16
Improvement (0.0013) (0.0011) (0.0008) (0.0010) (0.0034) (0.0046) (0.0044) (0.0056) (0.0068)

It can be observed that MSCN-2 (n=64) usually outperforms the original
SCN network, i.e. SCN (n=128), and MSCN-4 (n=32) can achieve the best SR
performance by improving the performance marginally over MSCN-2 (n=64).
This demonstrates the effectiveness of our approach that each SR inference model
is able to super-resolve its own class of image signals better than one single
generic inference model.

In order to further analyze the adaptive weight module, we select several
input images, namely, butterfly, zebra, barbara, and visualize the four weight
maps for every SR inference module in the network. Moreover, we record the
index of the maximum weight across all weight maps at every pixel and generate
a max label map. These results are displayed in Figure 3.

From these visualizations it can be seen that weight map 4 shows high re-
sponses in many uniform regions, and thus mainly contributes to the low fre-
quency regions of HR predictions. On the contrary, weight map 1, 2 and 3 have
large responses in regions with various edges and textures, and restore the high
frequency details of HR predictions. These weight maps reveal that these sub-
networks work in a supplementary manner for constructing the final HR predic-
tions. In the max label map, similar structures and patterns of images usually
share with the same label, indicating that such similar textures and patterns are
favored to be super-resolved by the same inference model.

3.3 Comparison with State-of-the-Arts

We conduct experiments on all the images in Set5, Set14 and BSD100 for dif-
ferent upscaling factors (×2,×3, and ×4), to quantitatively and qualitatively
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Fig. 3. Weight maps for the HR estimate from every SR inference module in
MSCN-4 are given in the first four rows. The map (max label map) which records
the index of the maximum weight across all weight maps at every pixel is shown
in the last row. Images from left to right: the butterfly image upscaled by ×2;
the zebra image upscaled by ×2; the barbara image upscaled by ×2.
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Fig. 4. Visual comparisons of SR results among different methods. From left to
right: the ppt3 image upscaled by ×3; the 102061 image upscaled by ×3; the
butterfly image upscaled by ×4.
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Fig. 5. The average PSNR and the average inference time for upscaling factor
×2 on Set14 are compared among different network structures of our method
and other SR methods. SRCNN uses the public slower implementation of CPU.

compare our own approach with a number of state-of-the-arts image SR meth-
ods. Table 2 shows the PSNR and SSIM for adjusted anchored neighborhood
regression (A+) [13], SRCNN [8], RFL [11], SelfEx [9] and our proposed model,
MSCN-4 (n=128) , that consists of four SCN modules with n = 128. The sin-
gle generic SCN without multi-view testing in [17], i.e. SCN (n=128) is also
included for comparison as the baseline. Note that all the methods use the same
91 images [6] for training except SRCNN [8], which uses 395,909 images from
ImageNet as training data.

It can be observed that our proposed model achieves the best SR performance
consistently over three data sets for various upscaling factors. It outperforms
SCN (n=128) which obtains the second best results by about 0.2dB across all
the data sets, owing to the power of multiple inference modules.

We compare the visual quality of SR results among various methods in Figure
4. The region inside the bounding box is zoomed in and shown for the sake of
visual comparison. Our proposed model MSCN-4 (n=128) is able to recover
sharper edges and generate less artifacts in the SR inferences.

3.4 SR Performance vs. Inference Time

The inference time is an important factor of SR algorithms other than the SR
performance. The relation between the SR performance and the inference time
of our approach is analyzed in this section. Specifically, we measure the average
inference time of different network structures in our method for upscaling factor
×2 on Set14. The inference time costs versus the PSNR values are displayed
in Figure 5, where several other current SR methods [9,11,8,13] are included as
reference (the inference time of SRCNN is from the public slower implementation
of CPU). We can see that generally, the more modules our network has, the more
inference time is needed and the better SR results are achieved. By adjusting
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the number of SR inference modules in our network structure, we can achieve
the tradeoff between SR performance and computation complexity. However,
our slowest network still has the superiority in term of inference time, compared
with other previous SR methods.

4 Conclusions

In this paper, we propose to jointly learn a mixture of deep networks for sin-
gle image super-resolution, each of which serves as a SR inference module to
handle a certain class of image signals. An adaptive weight module is designed
to predict pixel-level aggregation weights of the HR estimates. Various network
architectures are analyzed in terms of the SR performance and the inference
time, which validates the effectiveness of our proposed model design. Extensive
experiments manifest that our proposed model is able to achieve outstanding SR
performance along with more flexibility of design. In the future, this approach of
image super-resolution will be explored to facilitate other high-level vision tasks
[25].
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