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Abstract. We present a novel approach to object classification and de-
tection which requires minimal supervision and which combines visual
texture cues and shape information learned from freely available unla-
beled web search results. The explosion of visual data on the web can
potentially make visual examples of almost any object easily accessible
via web search. Previous unsupervised methods have utilized either large
scale sources of texture cues from the web, or shape information from
data such as crowdsourced CAD models. We propose a two-stream deep
learning framework that combines these cues, with one stream learning
visual texture cues from image search data, and the other stream learning
rich shape information from 3D CAD models. To perform classification
or detection for a novel image, the predictions of the two streams are
combined using a late fusion scheme. We present experiments and vi-
sualizations for both tasks on the standard benchmark PASCAL VOC
2007 to demonstrate that texture and shape provide complementary in-
formation in our model. Our method outperforms previous web image
based models, 3D CAD model based approaches, and weakly supervised
models.

1 Introduction

Object classification and detection are fundamental tasks in computer vision.
Previous mainstream object detectors based on hand-designed features (HOG[6])
and classifiers like linear discriminative analysis (LDA) [39] or Support Vec-
tor Machines [2,12] required training of limited parameters, and were thus sus-
tainable with small datasets. More recent Deep Convolutional Neural Network
(DCNN)-based object detectors[15,27] utilize more powerful DCNN features and
yield a significant performance boost, both for image classification[17,19,20,36]
and object detection[15,27]. Nevertheless, deep convolutional neural networks
need lots of labeled images to train their millions of parameters. Collecting these
images and annotating the objects is cumbersome and expensive. Even the most
popular detection datasets provide a limited number of labeled categories, e.g.,
20 classes in PASCAL VOC[10] and 200 in ImageNet[7]. Hence, a question arises:
is it possible to avoid the frustrating collection and annotation process and still
train an effective object classifier or detector?

To achieve this goal, researchers have proposed several recent models for
object model training. [18] introduces a transfer learning method that gains an
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Fig. 1. Two-Stream Texture and Shape Model: We propose a framework to
combine texture cues and shape information for object recognition with minimal
supervision. The Texture-CNN stream is trained on images collected from on-
line image search engines and the Shape-CNN stream is separately trained on
images generated from domain-specific 3D CAD models. To combine the two
streams, an average of the two last layers’ activations is computed to create the
Fusion-CNN object classifier and detector. In the test phrase, the model will
forward an image patch through the two networks simultaneously and compute
average fusion of the activations from the last layers. (Best viewed in color.)

object detector by transferring learned object knowledge from a classifier. [29,30]
propose to train an object localization and detection model with image-level
labels. However, these methods still count on per-image manual supervision.
In contrast, the methods in the previous literature that assume no per-image
labeling data can be categorized into two groups: 1) methods that utilize on-line
search results or an existing unlabeled dataset [3,8,43]; 2) methods that render
domain-specific synthetic images [24,33]. For example, [3,8] propose to learn a
visual representation and object detectors from on-line images. [43] leverages a
concept learner to discover visual knowledge from weakly labeled images (weak
labels can be in the form of keywords or short description). On the other hand,
[24,33] proposed to generate synthetic training images from 3D CAD models.
Such synthetic data is shown to be useful for augmenting small amounts of real
labeled data to improve object detection, as bounding boxes can be obtained
“for free” and objects can be rendered in arbitrarily many viewpoints.

While these approaches can work effectively in some cases, there are still
many challenges that need to be addressed:
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– Lack of bounding boxes: Unsupervised machine learning algorithms tackle
learning where no labeled training data is provided. This setting leads to a
great challenge for object detection because the performance of a detection
system depends heavily on differentiated positive and negative training ex-
amples labeled with tight bounding boxes. Without such annotations, it is
difficult for a model to learn the extent and shape of objects, i.e. which parts
of the image correspond to the target object and which are background.

– Missing shape or texture cues: Prior literature uses either web search [3,8]
or synthetic images [24,32,33], but rarely combines the intrinsic cues like ob-
ject shape and characteristic appearance patterns, or “texture”, which are
critical for recognition systems. Some rigid objects can be easily recognized
by its shape, such as aeroplanes and sofa; other objects can be easily recog-
nized by their unique texture, such as leopards and bees.

– Domain Shift: Images from different sources have different statistics for
background, texture, intensity and even illumination [25], which consequently
results in domain shift problems. Unlike images taken in the wild, most pho-
tographs returned by image search engines lack diversity in viewpoint, back-
ground and shape, for image search engines follow a high-precision low-recall
regime. In addition, synthetic images used in current work [24] are far from
photorealism in terms of intensity contrast, background, and object texture.

In this paper, we address these shortcomings by proposing a two-stream
DCNN architecture (See Figure 1) that decomposes the input into texture and
shape feature streams. The texture stream learns realistic texture cues from
images downloaded from the Internet. Web images (which contain noise from
backgrounds and unrelated results) are collected by searching for the names of
categories in image search engines, i.e. Google Image Search. We prune the noise
data and use the cleaned data to train the texture-based stream for classification
or detection. The shape stream is trained exclusively on shape information from
2D images rendered from CAD models annotated with category labels. Note
that images from web search also contain shape information, but due to the lack
of bounding box annotations, it is not accurate enough for localization models.
Synthetic images can also be generated from 3D CAD models with added texture
mapping, but the result is non-photorealistic and lacks real-world variety. There-
fore, synthetic images rendered by 3D CAD models can be viewed as primarily
shape-oriented and the web-search images can be viewed as primarily texture-
oriented. The outputs of the two streams are combined through averaging the
two top layers’ activations. Our method requires no tedious manual bounding
box annotation of object instances and no per-image category labeling and can
generate training data for almost any novel category. Table 1 shows a comparison
of the amount of supervision with other methods. The only supervision in our
work comes from labeling the CAD models as positive examples vs. “outliers”
while downloading them, and choosing proper textures for each category while
generating the synthetic images.

We evaluate our model for object classification and detection on the stan-
dard PASCAL VOC 2007 dataset, and show that the texture and shape cues can
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Type VOC Training Data Used Supervision
CAD Supervision, Ours, [24] NO Labeling 3D CAD models and their texture

Webly Supervision [3,8] NO Semantic Labeling
Selected Supervision [43] NO Per-image Labeling With Text
Weak Supervision [29,30] YES Per-image Labeling

Full Supervision [15] YES Per-instance Labeling

Table 1. Comparison of supervision between our method and others.
The supervision in our work only comes from labeling the CAD models and
their texture when generating the synthetic images. The second column indi-
cates whether in-domain data (VOC train+val set) is used in the methods. The
amount of supervision used in each method increases from top to bottom.

reciprocally compensate for each other during recognition. In addition, our detec-
tor outperforms existing webly supervised detectors [8], the approach based on
synthetic images only [24], and the weakly supervised learning approach of [29],
despite using less manual supervision.

To summarize, this work contributes to the computer vision community in
the following three aspects:

– we propose and implement a recognition framework that decomposes images
into their shape and texture cues;

– we show that combining these cues improves classification and detection
performance while using minimal supervision;

– we present a unified schema for learning from both web images and synthetic
CAD images.

2 Related Work

Webly Supervised Learning. The explosion of visual data on the Internet
provides important sources of data for vision research. However, cleaning and
annotating these data is costly and inefficient. Researchers have striven to design
methods that learn visual representations and semantic concepts directly from
the unlabeled data. Because the detection task requires stronger supervision than
classification, most previous research work [1,13,21,26] involving web images only
tackles the object classification task. Some recent work [4,8] aims at discovering
common sense knowledge or capturing intra-concept variance. In the work of
[3,8], webly supervised object detectors are trained from image search results.
We follow a similar approach as in [3] to train our texture model from web search
data, but also add shape information using a CAD-based CNN.

Utilization of CAD Models. CAD models had been used by researchers since
the early stages of computer vision. Recent work involving 3D CAD models
focuses on pose prediction [22,31,32,35]. Other recent work applied CAD models
to 2D object detection [24,34] by rendering synthetic 2D images from 3D CAD
models and using them to augment the training data. The main drawback of
these methods is that the rendered images are low-quality and lack real texture,
which significantly hurts their performance. In contrast, we propose a two-stream
architecture that adds texture information to the CAD-based shape channel. [24]
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explored several ways to simulate real images, by adding real-image background
and textures onto the 3D models, but this requires additional human supervision
to select appropriate background and texture images for each category. In this
work, we propose more effective ways to simulate real data with less supervision.

Two-stream Learning. The basic aim of two-stream learning is to model
two-factor variations. [37] proposed a bilinear model to separate “style” and
“content” of an image. In [23], a two-stream architecture was proposed for fine-
grained visual recognition, and the classifier is expressed as a product of two low-
rank matrices. [14,28] utilized two-stream architectures to model the temporal
interactions and aspect of features. We propose a CNN-based two-stream archi-
tecture that learns intrinsic properties of objects from disparate data sources,
with one stream learning to extract texture cues from real images and the other
stream learning to extract shape information from CAD models.

3 Approach

Our ultimate goal is to learn a good object classifier and object detector from
the massive amount of visual data available via web search and from synthetic
data. As illustrated in Figure 1, we introduce a two-stream learning architecture
to extract the texture cues and shape information simultaneously. Each stream
consists of three parts: the data acquisition component, the DCNN model and
the object classifier or detector. The intuition is to utilize texture-oriented images
from the web to train the texture stream and correspondingly, use shape-oriented
images rendered from 3D CAD models to train the shape stream.

3.1 DCNN-based Two-Stream Model

The history of two-stream learning can be traced back to over a decade ago when
a “bilinear model” was proposed by [37] to separate the “style” and “content” of
an image. More recent use [23,14,28] of two-stream learning is based on a similar
philosophy: employ different modalities to model different intrinsic visual prop-
erties, e.g. spatial features and temporal interactions. Inspired by this idea, we
propose a two-stream learning architecture, with one stream modeling real im-
age texture cues and the other modeling 3D shape information. We demonstrate
that the texture and shape cues can reciprocally compensate for each other’s
errors through late fusion.

For fair comparison with other baselines, within each stream, we use the
eight-layer “AlexNet” architecture proposed by [20]. It contains five convolu-
tional layers, followed by two fully connected layers (fc6, fc7). After fc7, another
fully connected layer (fc8) is applied to calculate the final class predictions. The
network adopts “dropout” regularization to avoid overfitting and non-saturating
neurons (ReLU layers) to increases the nonlinear properties of the decision func-
tion and to speed up the training process. The network is trained by stochastic
gradient descent and takes raw RGB image patches of size 227x227.
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The last layer (fc8 ) in each stream is represented by a softmax decision
function. To combine the learned texture cues and shape information, we fuse
the streams to render the final prediction as follows:

P (I = j|x) =
ex

Twt
j

2
∑N

i=1 e
xTwt

i

+
ex

Tws
j

2
∑N

i=1 e
xTws

i

(1)

where P (I = j|x) denotes the probability that image I belongs to category j
given feature vector x (fc7 feature in this case); xT , N , wt

i , ws
i are the transpose

of x, the number of total categories, weight vector for category i in Texture CNN,
weight vector for category i in Shape CNN, respectively.

The final probability P (I = j|x) is used as the score for Two-Stream classifier
and detector.

3.2 Texture CNN Stream

Previous work [24,41] has shown that discriminative texture information is cru-
cial for object classification and object detection systems. The challenge is how
to obtain large scale accurate texture data with the least effort and how to
prune the noisy images from unrelated search results. Previous approaches [3,4,8]
have tried various search engines to form the texture bank, while other research
work [11,40] attempt to clean the data.
Noise Data Pruning. We assume the distribution of features of the higher
CNN layers follows a multivariate normal distribution, thus we can fit the data
from each class to the domain-specific Gaussian distribution as follows:

fx(x1, x2...xk) =
1√

(2π)k|
∑
|
∗ exp(−1

2
(x− u)T

∑
−1(x− u)) (2)

where x is an k-dimensional feature vector and
∑

is the covariance matrix.
To remove outliers, for each category j (j ∈ [1, N ],N is the category number),

we start from the downloaded image set Sj with noise data and an empty set
Tj . For each image i, we perform outlier removal by

Tj =

{
Tj ∪ Sj(i), P (S(i) = j|uj ,

∑
j) > εj

Tj , P (S(i) = j|uj ,
∑

j) < εj
(3)

where P (S(i) = j|u,
∑

), εj , uj ,
∑

j are the probability that image i belongs to
category j, the pruning threshold for category j, the mean and covariance matrix
of domain specific Gaussian distribution, respectively. We then use {T1, T2, ...,
TN} to train the Texture CNN.

3.3 Shape CNN Model

Crowdsourced 3D models are easily accessible online and can be used to render
unlimited images with different backgrounds, textures, and poses [32,24]. The
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widely used 3D Warehouse1, Stanford Shapenet2 provide numerous 3D CAD
models for research use. Previous work has shown the great potential of syn-
thetic images rendered from 3D CAD models for object detection [24] and pose
estimation [32].

The flexibility and rigidity give 3D CAD models the unique merit for monitor-
ing image properties such as background, texture and object pose, with constant
shape information. However, the drawbacks of synthetic data are also obvious:

1. Lack of realism: Sythetic images generally lack realistic intensity informa-
tion which explicitly reflect fundamental visual cues such as texture, illumi-
nation, background.

2. Statistic Mismatch: The statistics (eg. edge gradient) of synthetic im-
age are different from realistic images. Thus the discriminatory information
preserved by the DCNN trained on synthetic images may lose its effect on
realistic images.

Fig. 2. Illustration of Edge Gradient.
Synthetic images rendered with white back-
grounds tend have higher contrast edges
around the outline of the object than nat-
ural images taken in the wild. Note that
this figure is an illustration, not represent-
ing real pixel intensities.

Simulating Real-Image Statis-
tics: One flaw of synthetic images is
that the instance is inconsistent with
the background. Thus, even rendered
with very sophisticated parameters
(pose variation, illumination, etc.),
the statistics mismatch in intensity
level still remains. Figure 2 illustrates
the difference of edge gradients be-
tween synthetic images rendered with
white backgrounds and real images.

After analysing the synthetic data,
we find the objects in the synthetic
images tend to have higher contrast
edges compared to real images taken
in the wild. Adding more realistic
backgrounds [24] is a good way to de-
crease the contrast, but may obscure
the object if the background is not
chosen carefully. Instead, in this work, for each image I, we process I by:

I ′ = ψG(I) + ξG (4)

where ψG(.) is a smoothing function based on a Gaussian filter and ξG is a
Gaussian noise generator. ψG(.) is used to mitigate the sharp edge contrast and
ξG to increase the intensity variations.

1 https://3dwarehouse.sketchup.com
2 http://shapenet.cs.stanford.edu/
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Fig. 3. Illustration Of Noisy Data Pruning. We fit the downloaded data to
a multivariate normal distribution and remove the outliers if their probability is
less than a learned threshold. (Best viewed in color)

4 Experiments

In this section, we describe our experimental settings in detail. We start from
downloading texture images via web search and rendering shape data from 3D
CAD models. We evaluate our Two-Stream CNN classifier and detector on the
standard benchmark PASCAL VOC 2007 [10] dataset.

4.1 Data Acquisition

Texture Data As illustrated in Figure 1, we leverage a text-based image search
engine (Google image search engine in our experiments) to collect the image
data. Most of the images returned by Google contain a single object centered in
the picture. This is good news for an algorithm attempting to learn the main
features of a certain category. However, the drawback is the returned data is
noisy and highly biased. For example, the top results returned by searching
“aeroplane” may contain many toy aeroplane and paper plane images. To make
matters worse, some returned images contain no “aeroplane”, but objects from
other categories.

We use the name of each object category as the query for Google image
search engine to collect the training images. After removing unreadable images,
there are about 900 images for each category and 18212 images in total.

With millions of parameters, the CNN model easily overfits to small dataset.
Therefore, data augmentation is valuable. Since most of the images are object-
centered, we crop 40 patches by randomly locating the top-left corner (x1, y1)
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Fig. 4. Synthetic Data Rendering Process. For each 3D CAD model, we
first align the model to the front view and set rotation parameters (X,Y, Z).
The 3D CAD model is then rotated by the chosen parameters. To mitigate the
intensity contrast around object edges, we add a background and texture to the
final synthetic image.

and bottom-right corner (x2, y2) by the following constraint: x1 ∈ [W20 ,
3W
20 ], y1 ∈ [ H20 ,

3H
20 ]

x2 ∈ [ 17W20 , 19W20 ], y2 ∈ [ 17H20 ,
19H
20 ]

(5)

(W,H) are the width and height of original image. The constraint ensures
that 49%-81% of the center area of the image is reserved. This image subsampling
process leaves us about 0.7 million images to train the Texture CNN.

We further utilize the approach illustrated in Section 3.2 to remove outliers
from the downloaded data. For each category j (j ∈ [1, N ], N is the class num-
ber), we denote all the image patches after image subsampling as Sj . We adopt
a DCNN architecture, known as “AlexNet” to extract fc7 feature for each patch
i ∈ Sj to form the fc7 feature set Fj . We fit the Fj to a multivariate normal dis-
tribution N (u,

∑
) and compute the probability of each image path i. Through

the fitting process we can find domain-specific variables uj and
∑

j . The thresh-
old εj in Equation 3 is set so that the probabilities of 80% of patches from Sj

are larger than it. Figure 3 shows some samples which have been pruned out
from the keyword search for “aeroplane”.

Shape Data 3D CAD models of thousands of categories are available online.
We utilize the 3D CAD models provided by [24] to generate our training images.
These 3D CAD models were downloaded from 3D Warehouse by querying the
name of the target categories. However, these models contain many “outliers”
(eg. tire CAD models while searching car CAD models). To solve this, we man-
ually selected the positive examples and delete the “outliers”. To be consistent
with our target dataset, we only adopt 547 3D CAD models for the 20 categories
in PASCAL 2007, ranging from “aeroplane” to “tv-monitor”.
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Fig. 5. Illustration of different edge gradients. The edge gradients of syn-
thetic images with white background differ drastically from images taken in the
wild. In the third image, we replace the white background with a mean im-
age computed from ImageNet[7] images and apply ψG(.) to smooth the edge
contrast. We further add some Gaussian noise ξG to the image to increase back-
ground variation.

AutoDesk 3ds MAX3 is adopted to generate the synthetic images, with the
entire generation process completed automatically by a 3ds Max Script. The
rendering process is almost the same as [24] (we refer the reader to this work
for more details), except that our approach generates possible poses by exhaus-
tively selecting (X,Y, Z) rotation parameters, where X,Y and Z are the de-
gree that the 3D CAD model needs to rotate around X-axis, Y-axis, Z-axis. As
shown in figure 4, for each 3D CAD model, we first align the model to front
view and set rotation parameters (X,Y, Z). The 3D CAD model is then rotated
by the chosen parameters. In our experiments, we only increment one variable
from (X,Y, Z) by 2 degrees at one time, constrained by X,Y ∈ [−10, 10] and
Z ∈ [70, 110]∪ [250, 290] to cover possible intra-category variations. In total, we
generate 833,140 synthetic training images to train our Shape CNN model.

To mitigate the intensity contrast around object edges, we add the mean
image of ImageNet[7] as the background to the final synthetic images. In our
ablation study, we try either texture-mapping objects with real image textures
as in [24], or using uniform gray (UG) texture.

As addressed in Section 3.3, one shortcoming of synthetic data is the statistic
mismatch, especially for the intensity contrast around the object edges. Figure
5 shows the difference in edge gradient between synthetic images with white
background and images taken in the wild. Recent work on DCNN visualization
[42] has shown that parameters in lower layers are more sensitive to edges. Thus
matching the statistics of synthetic images to those of real images is a good
way to decrease the domain shift. We apply a Gaussian filter based smoothing
function ψG(.) for every synthetic image, and then add Gaussian noise ξG to the

3 http://www.autodesk.com/store/products/3ds-max
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Method aer bik bir boabot bus car cat chr cowtbl doghrs mbkprs plt shp sof trn tv All
T-CNN 61 76 36 39 12 44 53 68 12 52 16 46 58 56 19 86 63 22 76 89 36.7

S-CNN 37 24 18 50 60 82 36 54 16 78 2 10 3 56 19 31 6 26 7 77 28.3
S-CNN-G 31 20 21 58 44 80 44 42 20 73 3 9 3 66 21 42 8 34 6 80 29.9
S-CNN-GN 32 20 20 51 53 80 47 47 25 68 2 12 5 69 21 53 8 37 3 85 31.7
F-CNN 52 66 30 50 42 74 45 70 16 84 13 33 41 59 24 71 53 27 50 89 38.1
F-CNN-G 56 65 31 59 27 76 48 63 18 77 14 35 46 64 25 71 55 30 51 89 38.7
F-CNN-GN 56 65 31 48 32 74 51 65 21 68 13 35 47 67 25 77 54 31 46 90 39.3

S-CNN-UG 30 25 16 51 20 80 40 11 13 49 1 5 16 76 27 64 1 24 35 46 27.2
S-CNN-G-UG 25 16 15 43 20 86 43 8 15 57 1 3 5 81 21 53 1 30 14 38 27.5
S-CNN-GN-UG 35 23 13 55 33 82 37 9 22 34 0 4 3 78 29 56 0 29 19 39 29.4
F-CNN-UG 56 68 30 52 16 70 50 61 14 57 12 38 49 70 28 83 55 23 68 81 39.3
F-CNN-G-UG 56 59 29 48 16 79 50 62 15 61 11 35 46 78 26 80 54 26 56 81 38.1
F-CNN-GN-UG 62 65 28 55 20 74 49 61 19 50 13 38 48 75 32 81 56 26 62 84 41.4

Table 2. Classification Results. Prefix “S-”, “T-” and “F-” denote “Shape”,
“Texture”, “Fusion”, respectively. Suffix “-G”, “-N”, “-UG” indicate synthetic
data is smoothed with ψG(.), is colored with Gaussian noise ξG, and is generated
with uniform gray texture. The results show Fusion-CNN model outperforms
Shape-CNN model and Texture-CNN model and simulating real statistics benefit
object classification system with minimal supervision. Note the last column is
not mean accuracy, but accuracy over all test set.

smoothed images. In our experiment, we use N (0, 1) for ψG(.) and N (0, 0.01)
for ξG. The third image in Figure 5 illustrates how the edge gradients become
more similar to real image gradients after ψG(.) and ξG are applied.

4.2 Classification Results

We evaluate our approach on standard benchmark PASCAL VOC 2007[10]. PAS-
CAL VOC dataset is originally collected for five challenges: classification, detec-
tion, segmentation, action classification and person layout. PASCAL VOC 2007
has 20 categories ranging from people, animals, plant to man-made rigid objects,
and contains 5011 training/validation images and 4952 testing images. In our
experiments, we only use testing images for evaluation.

Among the 4952 testing images, 14976 objects are annotated with tight
bounding boxes. In our classification experiments, we crop 14976 patches (one
patch for one object) with the help of these bounding boxes to generate test set.

The DCNN in each stream is initialized with the parameters pre-trained on
ImageNet[7]. The last output layer is changed from a 1000-way classifier to a 20-
way classifier and is randomly initialized with N (0, 0.01). The two DCNNs are
trained with same settings, with the base learning rate to be 0.001, momentum
to be 0.9 and weight decay to be 0.0005. Two dropout layers are adopted after
fc6, fc7 with the dropout ratio to be 0.5.

The results in Table 2 show when adding texture cues to Shape-CNN with
Equation 1, the performance rises from 28.3%, 29.9%, 31.7% to 38.1%, 38.7%,
39.3%, respectively. On the other side, adding shape cues to Texture-CNN can
boost the performance from 36.7% to 39.3%, with ψG(.) and ξG applied. The
results also demonstrate that simulating the real statistics can benefit the clas-
sification results.
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To better analyze how texture cues and shape information compensate for
each other, we plot the confusion matrix (with X-axis representing ground truth
labels and Y-axis representing predictions) for Texture-CNN, Shape-CNN, Fusion-
CNN in Figure 6 (Networks with “-G” or “-GN” have similar results). For the
convenience of comparison, we re-rank the order of categories and plot per-
category accuracy in Figure 6. There are some interesting findings:

– The top-right confusion matrix (for Shape-CNN) in Figure 6 shows that
CNN trained on synthetic images mistakes most of the “train” images for
“bus”, and mistakes “horse” and “sheep” images for “cow”, which is not
very surprising because they share similar shape visual information.

– From two confusion matrices on the top, we can see that Texture-CNN
trained on web images tends to mistake other images for “plant” and “TV”,
while Shape-CNN is keen on categories like “cow”, “bus”, “bottle” etc.

– The last sub-figure in Figure 6 is per-category accuracy. We re-rank the order
of categories for inspection convenience. Shape-CNN (green line) tends to
perform well for the categories presented on the left and Texture-CNN (blue
line) is more likely to get a high performance for the categories presented
on the right. Taking a closer look at the categories, we find that Shape-
CNN will work well for shape-oriented or rigid categories, e.g. bus, bottle,
motorbike, boat, etc. Inversely, Texture-CNN is more likely to obtain higher
performance on texture-oriented categories, such as cat, sheep, plant, horse,
bird etc. The performance of Fusion-CNN is mostly between Shape-CNN
and Texture-CNN and never gets a very poor result, which is why it can
work better than CNNs based on single cues. We also tried performing a
max fusion over the two streams, but the performance improvement is not
comparable with average fusion.

We also try removing the texture on the object from the synthetic image by
replacing it with uniform gray (UG) pixels. As shown in Table 2, this achieves
similar results, indicating that synthetically adding real texture to CAD models
may not be important for this classification task.

4.3 Object Detection Results

In our detection experiments, we find “S-CNN” (“F-CNN”), “S-CNN-G” (“F-
CNN-G”) and “S-CNN-GN” (“F-CNN-GN”) get comparable results, thus we
only report result for “S-CNN” (“F-CNN”) in this section.

For detection, we followed the standard evaluation schema provided by [10]:
a prediction bounding box P is considered to be a valid detection if and only
if the area of overlap IoU exceeds 0.5. The IoU is denoted with the following

formula: IoU =
area(Bp∩Bgt)
area(Bp∪Bgt)

, where Bp ∩ Bgt denotes the intersection of the

predicted bounding box and the ground truth bounding box and Bp ∪Bgt their
union.

Region Proposal An excellent region proposal method contributes to the per-
formance of both supervised and unsupervised learning. In our experiments, we



Combining Texture and Shape Cues for Object Recognition 13

Fig. 6. Confusion matrix and classification results. The confusion matrix
has been normalized by the number of total images per category. From up to
bottom, left to right, the four figures are: confusion matrix of texture CNN,
confusion matrix of shape CNN, confusion matrix of fusion CNN, classification
accuracy for each category. (Best viewed in color!)

adopt EdgeBox[44] to generate region proposals. EdgeBox is a efficient region
proposal algorithm which generates bounding box proposals from edge maps
obtained by contour detector. The bounding boxes are scored by the number of
enclosed contours inside the boxes.

Like in the classification task, for each region proposal, we pass it to Shape-
CNN and Texture-CNN simultaneously, and fuse the last layers’ activations.
Similar to [3], we randomly crop patches from YFCC[38] as the negative samples.
Further, we follow the schema of R-CNN[15] to compute mAP. We compare our
method to following baselines.

– VCNN(ICCV’15)[24] In this work, the authors propose to render domain-
specific synthetic images from 3D CAD models and train an R-CNN[15]
based object detector. Some results may involve minor supervision, e.g. se-
lecting background and texture. We compare to their W-RR model (white
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background, real texture) where the amount of supervision is almost the
same as in this work.

– LEVAN(CVPR’14)[8] LEVAN uses items in Google N-grams as queris
to collect training images from Internet. They propose a fully-automated
approach to organize the visual knowledge about a concept and further apply
their model to detection task on PASCAL VOC 2007.

– Webly Supervised Object Detection(ICCV’15)[3] The webly super-
vised learning approach collects images from Google and Flickr by searching
for the name of a certain category and utilizes Examplar-LDA [16] and ag-
glomerative clustering [5] to generate the potential “ground truth” bounding
box. For fair comparison, we only compared to their results of images down-
loaded from Google.

– Concept Learner(CVPR’15)[43] Concept learner is designed to discover
thousands of visual concepts automatically from webly labeled images. It
first trains a concept learner on the SBU dataset and selects the learned
concept detectors to compute the average precision.

Results listed in Table 3 demonstrate that combining real-image texture in-
formation with Shape-CNN will boost the mAP from 15.0 to 19.7, a relative
31.3% increase! Inversely, adding shape information to Texture-CNN boost the
mAP from 18.1 to 19.7, which shows texture cues and shape information can
compensate for each other in detection task. Despite the minimal amount of
required supervision, our Fusion-CNN also obtains higher performance than a
purely 3D CAD model based method like [24], a webly supervised approach like
[8] and a weakly supervised method where in-domain training data from PAS-
CAL VOC 2007 is available [8]. The results show that Fusion-CNN outperforms
DCNN based on single visual cues and other methods where similar or higher
levels of supervision are adopted.

As an ablation study, we perform the same experiments on synthetic images
generated without texture (“S-CNN-UG”, “F-CNN-UG” in table 3). The results
reveal that, unlike classification, adding some texture into the synthetic images
helps to boost performance for the detection task.

5 Conclusion

In this work, we proposed and implemented a novel minimally-supervised learn-
ing framework that decomposes images into their shape and texture and further
demonstrated that texture cues and shape information can reciprocally compen-
sate for each other. Furthermore, a unified learning schema, including pruning
noise web data and simulating statistics of real images is introduced, both for
web image based learning and synthetic image based learning. Finally, our clas-
sification and detection experiments on VOC 2007 show that our Fusion-CNN
with minimal supervision outperforms DCNNs based on single cues (only shape,
only texture) and previous methods that require similar or more supervision
effort. We believe our model is valuable for scaling recognition to many visual
object categories and can be generalized to other generic tasks such as pose
detection, robotic grasping and object manipulation.
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Method aer bik bir boabotbuscar cat chr cowtbl doghrs mbkprs plt shpsof trn tv mAP
T-CNN 22 20 19 18 9 35 28 21 9 13 4 16 29 31 6 11 15 11 25 19 18.1
S-CNN 20 18 18 15 9 29 23 4 9 16 0 13 19 26 13 9 14 12 4 27 15.0
F-CNN 29 23 19 22 9 41 29 17 9 21 1 20 23 33 9 9 17 13 16 27 19.7
S-CNN-UG 22 17 13 12 9 23 26 2 2 13 0 6 11 29 5 9 2 10 1 17 11.4
F-CNN-UG 25 18 15 18 10 38 30 14 3 18 1 17 20 31 8 10 12 12 11 19 17

VCNN [24] 36 23 17 15 12 25 35 21 11 16 0.1 16 16 29 13 9 4 10 0.6 29 17

Levan, Webly[8] 14 36 13 10 9 35 36 8 10 18 7 13 31 28 6 2 19 10 24 16 17.2
Chen’s Webly[3] 35 39 18 15 8 31 39 20 16 13 15 4 21 34 9 17 15 23 28 19 20.9

Zhou’s, Selected[43] 30 34 17 13 6 44 27 23 7 16 10 21 25 36 8 9 22 17 31 18 20.5

Siva’s, Weakly[29] 13 44 3 3 0 31 44 7 0 9 10 2 29 38 5 0 0 4 34 0 13.9
Song’s, Weakly[30] 8 42 20 9 10 36 39 34 1 21 10 28 29 39 9 19 21 17 36 7 22.7

RCNN, Full[15] 58 58 39 32 24 51 59 51 20 51 41 46 52 56 43 23 48 35 51 57 44.7

Table 3. Illustration Of Detection Results. Methods are categorized by
their supervision type. “Webly”, “Selected”, “Weakly”, “Full” represent webly
supervision, selected supervision, weak supervision, full supervision, respectively.
The definitions of these supervisions are the same as in [43]. The supervision
in our work only comes from labeling the CAD models and choosing proper
texture for the CAD models when generating synthetic images. The supervision
used in [24] is almost the same as in our approach, except that they also labeled
pose for the CAD models. The results demonstrate that our Fusion-CNN model
outperforms methods based on single visual cues and other methods with similar
or higher required supervision effort.
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6 Appendix

A. Detection Result Diagnosis
We further use the diagnosis tools provided in [9] to analyze our detectors,
Table 4 and Figue 7 highlight some of the interesting observations.

Table 4 illustrates the diagnosis results. From top to bottom, each row
represents diagnosis for “animals” (including “birds”, “cat”, “cow”, “dog”,
“horse”, “person”, “sheep”), “vehicles” (including “aeroplane”, “bike”,“boat”,
“bus”, “car”, “motorbike”, “train”) and “furniture” (including “chair”, “ta-
ble”, “sofa”). The diagnosis tools [9] will categorize the false positive samples
into four categories: Localization error (Loc), Confusion with similar ob-
jects (Sim), Confusion with dissimilar objects (Oth), Confusion with
background (BG). (We refer the reader to [9] for more details). After analyzing
the distribution of these four type of errors, we list some interesting observations:

– Localization error (Loc, blue area in the figures) is the majority of the false
positives for T-CNN, mainly because training images (downloaded from
Google image search engine) for Texture-CNN do not provide ground truth
bounding boxes. Other issues like multiple instances in one bounding box
also cause localization error.
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– For S-CNN, confusion with similar objects (Sim, red area in the figures)
accounts for a large portion of the false positives, especially for “animals”.
The synthetic data used to train Shape-CNN lacks discriminative texture
cues. For example, the rendered sheep images, horse images and cow images
share the same visual representations in shape.

– Compared to “anmimals”, “vehiches” will have less confusion with similar
objects (Sim) errors and confusion with dissimilar objects (Oth) errors; on
the contrary, “furniture” will have more.

– The distribution of false positives for F-CNN is a compromise of T-CNN
and S-CNN.

B. Examples Of Top False Positives

In figure 7, we show the top four false positives for category “aeroplane”,
“bottle”, “bus”, “cat”, “cow”, “dog” and “train”. These figures demonstrate
that localizing the objects precisely is still a great challenge for object detector
with little supervision.
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