Skip to main content

Analysis and Practical Minimization of Registration Error in a Spherical Fish Tank Virtual Reality System

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

We describe the design, implementation and detailed visual error analysis of a 3D perspective-corrected spherical display that uses calibrated, multiple rear projected pico-projectors. The display system is calibrated via 3D reconstruction using a single inexpensive camera, which enables both view-independent and view-dependent applications, also known as, Fish Tank Virtual Reality (FTVR). We perform error analysis of the system in terms of display calibration error and head-tracking error using a mathematical model. We found: head tracking error causes significantly more eye angular error than display calibration error; angular error becomes more sensitive to tracking error when the viewer moves closer to the sphere; and angular error is sensitive to the distance between the virtual object and its corresponding pixel on the surface. Taken together, these results provide practical guidelines for building a spherical FTVR display and can be applied to other configurations of geometric displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Favalora, G.E.: Volumetric 3d displays and application infrastructure. Computer 38, 37–44 (2005)

    Article  Google Scholar 

  2. Downing, E., Hesselink, L., Ralston, J., Macfarlane, R.: A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996)

    Article  Google Scholar 

  3. Blundell, B.G., Schwarz, A.J.: Volumetric Three-Dimensional Display Systems, 1st edn., p. 330. Wiley-VCH, March 2000. ISBN: 0-471-23928-3

    Google Scholar 

  4. Teubl, F., Kurashima, C.S., Cabral, M., Lopes, R.D., Anacleto, J.C., Zuffo, M.K., Fels, S.: Spheree: an interactive perspective-corrected spherical 3d display. In: 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2014)

    Google Scholar 

  5. Arthur, K.W., Booth, K.S., Ware, C.: Evaluating 3d task performance for fish tank virtual worlds. ACM Trans. Inf. Syst. (TOIS) 11, 239–265 (1993)

    Article  Google Scholar 

  6. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the cave. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142. ACM (1993)

    Google Scholar 

  7. Stavness, I., Lam, B., Fels, S.: pCubee: a perspective-corrected handheld cubic display. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1381–1390. ACM (2010)

    Google Scholar 

  8. Lam, B., Tang, Y., Stavness, I., Fels, S.: A 3d cubic puzzle in pcubee. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 135–136. IEEE (2011)

    Google Scholar 

  9. Benko, H., Wilson, A.D., Balakrishnan, R.: Sphere: multi-touch interactions on a spherical display. In: Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology, pp. 77–86. ACM (2008)

    Google Scholar 

  10. Bolton, J., Kim, K., Vertegaal, R.: Snowglobe: a spherical fish-tank vr display. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 1159–1164. ACM (2011)

    Google Scholar 

  11. Raskar, R.: Immersive planar display using roughly aligned projectors. In: Proceedings of the Virtual Reality, pp. 109–115. IEEE (2000)

    Google Scholar 

  12. Raij, A., Gill, G., Majumder, A., Towles, H., Fuchs, H.: Pixelflex2: a comprehensive, automatic, casually-aligned multi-projector display. In: IEEE International Workshop on Projector-Camera Systems, Nice, France, pp. 203–211 (2003)

    Google Scholar 

  13. Raskar, R., Brown, M.S., Yang, R., Chen, W.C., Welch, G., Towles, H., Scales, B., Fuchs, H.: Multi-projector displays using camera-based registration. In: Proceedings of the Visualization 1999, pp. 161–522. IEEE (1999)

    Google Scholar 

  14. Van Baar, J., Willwacher, T., Rao, S., Raskar, R.: Seamless multi-projector display on curved screens. In: Proceedings of the Workshop on Virtual Environments, pp. 281–286. ACM (2003)

    Google Scholar 

  15. Harville, M., Culbertson, B., Sobel, I., Gelb, D., Fitzhugh, A., Tanguay, D.: Practical methods for geometric and photometric correction of tiled projector. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 5. IEEE (2006)

    Google Scholar 

  16. Sajadi, B., Majumder, A.: Automatic registration of multi-projector domes using a single uncalibrated camera. In: Computer Graphics Forum, vol. 30, pp. 1161–1170. Wiley Online Library (2011)

    Google Scholar 

  17. Sajadi, B., Majumder, A.: Autocalibration of multiprojector cave-like immersive environments. IEEE Trans. Vis. Comput. Graph. 18, 381–393 (2012)

    Article  Google Scholar 

  18. Azuma, R., Bishop, G.: Improving static and dynamic registration in an optical see-through hmd. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 197–204. ACM (1994)

    Google Scholar 

  19. Holloway, R.L.: Registration error analysis for augmented reality. Presence Teleoperators Virtual Environ. 6, 413–432 (1997)

    Article  Google Scholar 

  20. You, S., Neumann, U., Azuma, R.: Orientation tracking for outdoor augmented reality registration. IEEE Comput. Graph. Appl. 19, 36–42 (1999)

    Article  Google Scholar 

  21. MacIntyre, B., Coelho, E.M., Julier, S.J.: Estimating and adapting to registration errors in augmented reality systems. In: Proceedings of the Virtual Reality, pp. 73–80. IEEE (2002)

    Google Scholar 

  22. Falcao, G., Hurtos, N., Massich, J.: Plane-based calibration of a projector-camera system. VIBOT Master 9, 1–12 (2008)

    Google Scholar 

  23. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  24. Forbes, A.B.: Least-squares best-fit geometric elements. National Physical Laboratory Teddington (1989)

    Google Scholar 

  25. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  26. Xu, X., McGorry, R.W.: The validity of the first and second generation microsoft kinect for identifying joint center locations during static postures. Appl. Ergon. 49, 47–54 (2015)

    Article  Google Scholar 

  27. Polhemus, F.: 3space Fastrak Users Manual. F. Polhemus Inc., Colchester (1993)

    Google Scholar 

  28. Chen, H., Sukthankar, R., Wallace, G., Li, K.: Scalable alignment of large-format multi-projector displays using camera homography trees. In: Proceedings of the Conference on Visualization 2002, pp. 339–346. IEEE Computer Society (2002)

    Google Scholar 

  29. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge (1986)

    Google Scholar 

Download references

Acknowledgement

We thank B-Con Engineering, NVIDIA and NSERC Canada for providing financial and in-kind support and Dr. Marcelo Zuffo and his group at University of Sao Paulo for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 21885 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, Q., Miller, G., Wu, K., Stavness, I., Fels, S. (2017). Analysis and Practical Minimization of Registration Error in a Spherical Fish Tank Virtual Reality System. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics