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Abstract. Depth scans acquired from different views may contain nui-
sances such as noise, occlusion, and varying point density. We propose
a novel Signature of Geometric Centroids descriptor, supporting direct
shape matching on the scans, without requiring any preprocessing such
as scan denoising or converting into a mesh. First, we construct the de-
scriptor by voxelizing the local shape within a uniquely defined local
reference frame and concatenating geometric centroid and point density
features extracted from each voxel. Second, we compare two descriptors
by employing only corresponding voxels that are both non-empty, thus
supporting matching incomplete local shape such as those close to scan
boundary. Third, we propose a descriptor saliency measure and com-
pute it from a descriptor-graph to improve shape matching performance.
We demonstrate the descriptor’s robustness and effectiveness for shape
matching by comparing it with three state-of-the-art descriptors, and
applying it to object/scene reconstruction and 3D object recognition.

1 Introduction

The recent development in depth sensing devices offers a convenient and flexible
way to acquire depth scans of an object or a scene that represent their partial
shapes. In practice, we need to register these scans into a common coordinate
system to better understand the object’s or scene’s geometry [1] or compare
known object models with these scans for 3D object recognition [2]. All these
applications require solving the partial shape matching problem [3,4].

Depth scans (i.e., 3D point clouds) lack topology information of the shape
and usually contain noise, holes, and/or varying point density. To facilitate par-
tial shape matching, one common way is to convert the point cloud into a mesh
to remove the noise and fill the holes, and then perform shape matching on
the mesh instead [5,6,7,8]. Although this conversion simplifies the matching pro-
cess, it brings several drawbacks. First, original partial shape could be modified
and/or downsampled by the conversion, e.g., when smoothing the depth scan
for denoising. Second, the mesh topology generated by the conversion could be
different from the real one such as incorrectly filled holes, misleading the shape
matching.

Therefore, other researchers seek to perform shape matching directly on the
point cloud data. This is generally achieved by representing and matching the
scans using local shape descriptors. Although existing descriptors [9,10,11,12]

1

ar
X

iv
:1

61
2.

08
40

8v
1 

 [
cs

.C
V

] 
 2

6 
D

ec
 2

01
6



2 Keke Tang, Peng Song, and Xiaoping Chen

work well on clean depth scans, they have difficulties dealing with original scans
acquired under various conditions such as occlusion, clutter, and varying lighting.
This is because these descriptors are sensitive to noise and/or varying point
density due to their encoded shape features such as point density [9,10] and
surface normals [11], or are sensitive to scan boundary and holes due to their
descriptor comparison scheme that is based on the vector distance [11,12].

To address above limitations, we propose a Signature of Geometric Centroids
(SGC) descriptor for partial shape matching with three novel components:

– A Robust Descriptor. We construct the SGC descriptor by voxelizing the
local shape within a uniquely defined local reference frame (LRF) and con-
catenating the geometric centroid and point density features extracted from
each non-empty voxel. Thanks to the extracted shape features, our descriptor
is robust against noise and varying point density.

– A Descriptor Comparison Scheme. Rather than simply computing the Eu-
clidean distance between two descriptors, we compute a similarity score be-
tween two descriptors based on comparing the extracted features from cor-
responding voxels that are both non-empty. By this, the comparison scheme
supports shape matching between local shape that are incomplete.

– Descriptor Saliency for Shape Matching. Different from keypoint detec-
tion [13] that identifies distinct points locally on a single scan/model, we
propose descriptor saliency to measure distinctiveness of SGC descriptors
across all input scans and compute it from a descriptor-graph. Guided by
the descriptor saliency, we improve shape matching performance by inten-
tionally selecting distinct descriptors to find corresponding feature points.

We evaluate the robustness of SGC against various nuisances including scan
noise, varying point density, distance to scan boundary, occlusion, and the ef-
fectiveness of using SGC and descriptor saliency for partial shape matching.
Experimental results show that SGC outperforms three start-of-the-art descrip-
tors (i.e., spin image [9], 3D shape context [10], and signature of histograms of
orientations (SHOT) [11]) on publicly available datasets. We further apply SGC
to two typical applications of partial shape matching, i.e., object/scene recon-
struction and 3D object recognition, to demonstrate its usefulness in practice.

2 Related Work

Shape Matching. Shape matching aims at finding correspondences between
complete or partial models by comparing their geometries. Many shape matching
approaches apply global shape descriptors to characterize the whole shape, for
example, using Reeb graphs [14] or skeleton graphs [15] for articulated objects
and shape distributions [16] for rigid objects. However, depth scans acquired from
each single view usually have significant missing data. Matching these partial
shapes is a difficult task because, before computing the correspondences of the
shapes, we first need to find the common portions among them [1]. This requires
a careful design of local shape descriptors [17] that are less sensitive to occlusion.
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Local Shape Descriptors. Local shape descriptors can be classified as low-
and high-dimensional, according to the richness of encoded local shape infor-
mation. Low-dimensional descriptors such as surface curvature [18] and surface
hashes [19], are easy to compute, store, and compare, yet have limited descrip-
tive ability. Compared with them, high-dimensional descriptors provide a fairly
detailed description of the local shape around a surface point. We classify high-
dimensional descriptors into three classes according to their attached LRF [20].

Descriptors without an LRF. Early local shape descriptors are generated by di-
rectly accumulating some geometric attributes into a histogram, without build-
ing an LRF. Hetzel et al. [21] represented local shape patches by encoding three
local shape features (i.e., pixel depth, surface normals, and curvatures) into a
multi-dimensional histogram. Yamany et al. [22] described local shape around a
feature point by generating a signature image that captures surface curvatures
seen from that point. Kokkinos et al. [23] generated an intrinsic shape context
descriptor by shooting geodesic outwards from a keypoint to chart the local
surface and creating a 2D histogram of features defined on the chart.

Due to the missing of an LRF, the correspondence built by matching the
descriptors is limited to the point spatial position only. Thus, to match two scans
by estimating a rigid transform, at least three pairs of corresponding points need
to be found, making the space of searching corresponding points large.

Descriptors with a non-unique LRF. Researchers later attached an LRF for
local shape descriptors to enrich the correspondence with spatial orientation. By
this, two scans can be matched by finding a single pair of corresponding points
using the descriptors and estimating the transform based on aligning associated
LRFs. However, since the attached LRF is not unique, a further disambiguation
process is required for the generated transform.

Johnson et al. [24] proposed a spin image descriptor by spinning a 2D image
about the normal of a feature point and summing up the number of points that
fall into the bins of that image. Frome et al. [10] proposed a 3D shape context
(3DSC) descriptor by generating a 3D histogram of accumulated points within
a partitioned spherical volume centered at a feature point and aligned with the
feature normal. Mian et al. [5] proposed a 3D tensor descriptor by constructing
an LRF from a pair of oriented points and encoding the intersected surface area
into a multidimensional table. Zhong [25] proposed intrinsic shape signatures by
improving [10] based on a different partitioning of the 3D spherical volume and
a new definition of LRF with ambiguity.

Descriptors with a unique LRF. Recently, researchers constructed a unique LRF
from the local shape around a feature point and further describe the local shape
relative to the LRF. Thanks to the unique LRF, the transform to match two
scans can be uniquely defined based on aligning corresponding LRFs.

Tombari et al. [11] proposed a SHOT descriptor by concatenating local his-
tograms of surface normals defined on each bin of a partitioned spherical volume
aligned with a unique LRF. Guo et al. [7] constructed a RoPS descriptor by
rotationally projecting the neighboring points of a feature point onto 2D planes
and calculating a set of statistics within a unique LRF. Guo et al. [12] later gen-
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erated three signatures representing the point distribution in three cylindrical
coordinate systems and concatenated and compressed these signatures into a Tri-
Spin-Image descriptor. Song and Chen [8] developed a local voxelizer descriptor
by voxelizing local shape within a unique LRF and concatenating an intersected
surface area feature in each voxel, and applied it to surface registration [26].

SGC is also constructed within a unique LRF. Compared with above de-
scriptors, the geometric centroid feature that we extract for constructing the
descriptor is more robust against noise and varying point density. Moreover, our
descriptor comparison scheme supports matching local shape that is close to the
scan boundary. By this, SGC is more robust for shape matching on point cloud
data than state-of-the-art descriptors [9,10,11], see Section 5 for the comparisons.

3 Signature of Geometric Centroids Descriptor

This section presents the method to construct an SGC descriptor for the local
shape (i.e., support) around a feature point p, a scheme to compare a pair of
SGC descriptors, and the parameters tuned for generating SGC descriptors.

3.1 LRF Construction

Given a feature point p on a scan and a radius r, a local support is defined
by intersecting the scan with a sphere centered at p with radius r. Taking this
support as input, we construct a unique LRF based on principal component
analysis (PCA) on the support by using the approach in [11], see Figure 1(a).
When the normal of p is available, we further improve the disambiguation of
LRF axes by enforcing the principal axis associated with the smallest eigenvalue
(i.e., the blue axis in Figure 1(a)) to be consistent with the normal [8].

3.2 SGC Construction

Given the unique LRF, a general way to construct a descriptor is to partition
a support into bins, extract shape features from each bin, and concatenate the
values representing the shape features into a descriptor vector (or a histogram).
Partition the Support. Given a support Sp around a feature point p, there
are three typical approaches to partition Sp into small local patches. The first
one is to partition the bounding spherical volume of Sp into girds evenly [11]
or logarithmically [10] along azimuth, elevation and radial dimensions. The sec-
ond one is to partition the angular space of the spherical volume into relatively
homogeneously distributed bins [25]. However, the bins generated by these two
approaches have varying sizes, which need to be compensated when construct-
ing a descriptor. In addition, the irregular shape of these bins complicates the
segmentation of local shape within each bin for extracting local shape features.

The third approach is to construct a bounding cubical volume of Sp that is
aligned with the LRF and partition the cubical volume into regular bins (i.e.,
voxels) [8]. These regular bins simplify the extraction of local shape features and
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Fig. 1. Constructing an SGC descriptor. (a) Construct a unique LRF from a
spherical support centered at a feature point (in pink); (b) segment a cubical
support centered at the feature point and aligned with the LRF; (c) voxelize the
support and extract centroid features from non-empty voxels; the centroid color
indicates point density in the voxel, where small and large densities are colored
in blue and red respectively.

thus the descriptor construction. Therefore, we employ the third approach to
partition Sp for constructing the SGC descriptor, see Figure 1(b&c). Note that
the edges of the cubical volume have a length of 2R, where R ≥ r.
Extract Bin Features. Due to the missing of topology information, point
clouds have limited types of shape features that can be extracted, e.g., surface
normal feature in SHOT [11] and point density feature in 3DSC [10]. This pa-
per proposes extracting a geometric centroid feature from each non-empty voxel
for constructing SGC due to following reasons. First, centroid is an integral
feature [27], thus can be more robust against noise and varying point density.
Second, centroid can be computed simply by averaging the positions of all points
staying within a voxel. Note that we do not realize any existing work that em-
ploys centroid features for constructing a usable descriptor.
Construct the Descriptor. We divide the cubical volume evenly into K ×
K × K bins (i.e., voxels) with the same size, see Figure 1(c). For each voxel
Vi, we identify all Ni points staying within the voxel and then calculate the
centroid (Xi, Yi, Zi) for the points. Note that, the position of the centroid is
relative to the minimum corner of Vi in the LRF. We save the extracted feature
as (Xi, Yi, Zi, Ni) for non-empty voxels, and (0,0,0,0) for empty ones. An SGC
descriptor is generated by concatenating all these values assigned for each voxel.
The dimension of an SGC descriptor saved in this way is 4×K ×K ×K.

Thanks to the unique LRF, the three positional values of Vi’s centroid
(Xi, Yi, Zi) can be compressed into a single value using Ci = (Zi×L+Yi)×L+Xi,
where L = 2R denotes the edge length of Vi. By this, we compress the dimension
of the descriptor to 2×K ×K ×K, saving 50% storage space.

3.3 Comparing SGC Descriptors

Ideally, SGC descriptors generated for two corresponding points in different scans
should be exactly the same. However, due to variance of sampling, noise and oc-
clusion, the two descriptors usually have a certain amount of difference. Unlike
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existing approaches that compare descriptors by computing their Euclidean dis-
tance [11,7,8], we develop a new scheme for comparing two SGC descriptors.

When constructing an SGC descriptor, most of the voxels are likely to be
empty (see again Figure 1(c)). We classify each pair of corresponding voxels
into three cases: 1) empty voxel vs empty voxel; 2) non-empty voxel vs empty
voxel; and 3) non-empty voxel vs non-empty voxel. In all three cases, only case
3 should contribute to computing a similarity score between two descriptors.
Thus, to compare two SGC descriptors quantitatively, we propose to accumulate
a similarity score for every pair of corresponding voxels that are both non-empty.

In detail, we denote two SGC descriptors as Dm and Dn. The similarity
between the i-th voxel of Dm, Vi

m, and the i-th voxel of Dn, Vi
n, is defined as:

s(Vi
m,V

i
n) =

{
ln

Ni
mN

i
n

‖Ci
m−Ci

n‖
2+ε

, for N i
m > 0 and N i

n > 0

0 for N i
m = 0 or N i

n = 0
(1)

where N i
m and N i

n represent the number of points in Vi
m and Vi

n respectively,
while Cim and Cin represent the centroid of Vi

m and Vi
n respectively. Here we

directly employ the number of points in each voxel to represent its point den-
sity as all voxels have the same size. The formula can be explained as follows.
Whenever Vi

m and/or Vi
n are empty (i.e., N i

m = 0 or N i
n = 0), s(Vi

m,V
i
n) = 0.

Otherwise, when two corresponding voxels contain similar local shape, their cen-
troids should be close to each other, making s(Vi

m,V
i
n) large. When N i

m and/or
N i
n are large, s(Vi

m,V
i
n) is large also as the estimated centroid(s) are more ac-

curate. By this, the formula encourages to find matches based on denser parts
of input scans when the scans are irregularly sampled.

The overall similarity score between Dm and Dn can be obtained by accumu-
lating the similarity value for every pair of corresponding voxels:

S(Dm,Dn) =

K×K×K∑
i=1

s(Vi
m,V

i
n) (2)

3.4 SGC Generation Parameters

The SGC descriptor has two generation parameters: (i) the support radius R;
and (ii) the voxel grid resolution K. According to our experiments, we choose
R = 20 pr as a tradeoff between the descriptiveness and sensitivity to occlusion,
where pr denotes the point cloud resolution (i.e., average shortest distance among
neighboring points in the scan). And we choose K = 8 as a tradeoff between the
descriptiveness and efficiency since a larger K increases the descriptiveness and
computational cost simultaneously. Note that in these experiments, we let the
LRF and the descriptor have the same support radius, i.e., r = R.

4 Partial Shape Matching using SGC

In this section, we describe the general pipeline to match two scans using SGC de-
scriptors and propose a descriptor saliency measure for improving shape match-
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ing performance. We also highlight the advantage of using SGC descriptors for
matching supports that are close to scan boundary.

4.1 General Shape Matching Pipeline

Given a data scan Sd and a reference scan Sr, the goal of shape matching between
Sd and Sr is to find a rigid transform on Sd to align it with Sr. By employing
the SGC descriptors, we can find such a transform with following steps:
1) Represent Scans with SGC Descriptors. We first conduct a uniform sampling
on each of Sd and Sr to generate M feature points that cover the whole scan
surface. Next, for each feature point p, we construct the LRF and SGC descriptor
for the support around p. By this, we represent each of Sd and Sr with M
descriptor vectors and the corresponding LRFs, see Figure 2(a&b).
2) Generate Transform Candidates. When a point on Sd corresponds to another
point on Sr, their associated SGC descriptors should be similar to each other.
Hence, we compare each feature descriptor of Sd with each feature descriptor of
Sr by calculating a similarity score using Eq. 2. A feature point on Sd and its
closest feature point on Sr are considered as a match if the similarity score is
higher than a threshold. Each match generates a rigid transform candidate (i.e.,
a 4× 4 transformation matrix) by aligning the associated LRFs.
3) Select the Optimal Transform. By matching the descriptors of Sd and Sr, we
obtain a number of candidate transforms. We sort these transforms based on the
descriptor similarity score and then pick the top five candidates with the highest
scores. We apply each of the five selected transforms on Sd to align it with Sr.
We evaluate the transform by computing a scan overlap ratio. We first find all

Fig. 2. Matching two scans using SGC descriptors: (a) sampled feature points
(in purple) on two input scans (only part of samples are shown for clarity); (b)
calculated LRFs and descriptors; (c) a pair of matched descriptors; (d) match
the two scans based on aligning the associated LRFs; and (e) refine the scan
alignment using ICP.
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point-to-point correspondences by checking if the distance between a point on
transformed Sd and a point on Sr is sufficiently small, and further compute the
overlap ratio as the number of corresponding points divided by the total number
of points in Sd or Sr (smaller one). We select the transform that ensures the
largest overlap ratio as the optimal one, see Figure 2(c&d).

4) Refine the Scan Alignment. Optionally, we can apply iterative closest point
(ICP) to refine the alignment generated by the selected optimal transform, see
Figure 2(e). By comparing Figure 2(d&e), we can see that the transform calcu-
lated by aligning LRFs is very close to the one refined using ICP.

4.2 Improve Shape Matching using Descriptor Saliency

To ensure corresponding points to be found on different scans, we need to sample
a large number of feature points on each scan, e.g., M = 1000 in our experiments.
However, among the M descriptors on a single scan, there could exist some
descriptors close to one another since their corresponding supports are similar,
see Figure 3(a). Moreover, among descriptors from all input scans, there could
exist a larger number of descriptors with high similarities, see Figure 3(a-c).

Our observation is that when there exist a large number of descriptors with
high similarities, it means their corresponding supports are less distinctive (e.g.,
flat or spherical shape), see the zooming views in Figure 3(a). Thus, it has a
lower chance to match the scans correctly by using such supports and their
descriptors. On the other hand, when a descriptor is quite different from others,
it means its support is distinctive (see the top zooming views in Figure 3(b&c)).

Inspired by this observation, we propose a measure of descriptor saliency to
improve the shape matching performance and compute it based on a descriptor-
graph. The key idea is to find descriptors (and the corresponding supports)
that are distinctive by measuring their saliency and apply these descriptors to
find corresponding feature points. We first describe our approach to build a
descriptor-graph, present our definition on the descriptor saliency, and then show
how we apply the descriptor saliency to enhance shape matching.

Fig. 3. Supports on three different scans of a Chef model, where feature points
are rendered in pink. The correspondence between a scan support on the left
and its zooming view on the right is indicated by the same 2D box color.
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Build a Descriptor-Graph. For a given reference scan Sr, we build a descriptor-
graph for all the descriptors sampled from Sr based on their similarities com-
puted using Eq. 2. Formally, let G = (V,E) be a descriptor-graph, each node
u ∈ V represents an SGC descriptor on Sr. while each directed edge (u, v) ∈ E
represents that v is one of k-nearest neighbours (k-NN) of u in the descriptor
similarity space. Note that we do not require u also to be one of k-NN of v,
which means there may not exist a directed edge (v, u) in G.

To build such a graph, a straightforward way is to exhaustive search all de-
scriptors on Sr to retrieve k-NN for each descriptor in G. However, this approach
is time-consuming, especially when G is large. We speed up the creation of the
graph following [28], and the basic idea is to initially fill the nearest neighbors by
randomly sampling descriptors in G, and iteratively optimize the nearest neigh-
bors locally via similarity propagation and random search until convergence.
Define Descriptor Saliency. We define descriptor saliency as the distinctive-
ness among a set of given descriptors. The larger difference between a descriptor
and others, the higher its saliency. Thus, we measure saliency of a descriptor Di

in a descriptor-graph G using sali(Di) = 1
1+e(Ii−Ī) , where Ii denotes the number

of nodes in G that considers Di as a k-NN and Ī is the mean value of all Ii that
is larger than zero. Note that although Di has k nearest neighbors in G, these
neighbors could be very different from Di. By fixing k, the value Ii can reveal
how many descriptors are close to Di (i.e., Di’s distinctiveness). Figure 4 shows
descriptor saliency in a simple descriptor-graph with k = 3.
Shape Matching with Descriptor Saliency. For a given reference scan Sr,
we first create a descriptor-graph Gr for it and compute a saliency value for every
descriptor Di

r in Gr using sali(Di). For a given descriptor on the data scan Sd,

say Dj
d, we enhance the similarity score between Dj

d and Di
r by using sali(Di

r),

i.e., S̄(Dj
d,D

i
r) = sali(Di

r)
α S(Dj

d,D
i
r), where α is a weight to control the impact

of saliency on the descriptor similarity. We set α = 0.2 in our experiments.
Intuitively, we can find the descriptor on Sr corresponding to Dj

d on Sd by

simply comparing every Di
r on Sr with Dj

d and selecting the one with the largest

S̄(Dj
d,D

i
r). We speed up the search of the corresponding descriptor by taking

advantage of Gr with the idea of leveraging existing matches to find better ones.
This is achieved by randomly selecting a set of nodes in Gr and updating the
nodes by a few iterations of similarity propagation and random search [29],

Fig. 4. An example descriptor-graph (outdegree = 3 for every node).
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guided by the similarity score (using Eq. 2) between Dj
d and the nodes. After

obtaining a small set of descriptors on Sr that are similar to Dj
d, we conduct

re-ranking using S̄(Dj
d,D

i
r) to select the final correspondence.

We have illustrated applying descriptor saliency for shape matching between
a pair of scans. Descriptor saliency is more suitable for shape matching among a
number of scans, with following changes. First, we build a large descriptor-graph
G for descriptors from all the scans. Second, we compare a descriptor on scan Sm

with nodes in G that are not from Sm. By this, the larger the number of scans,
the higher shape matching performance can be improved by descriptor saliency.

4.3 Matching Supports Close to Scan Boundary

Depth scans captured from a certain view are mostly incomplete due to a limited
viewing angle, sensor noise, and occlusion. This results in a surface boundary
for a scan. Matching supports close to the boundary is a challenging task. First,
the support is likely to be incomplete, see examples in Figure 2(b). This affects
an LRF’s repeatability since support is the only input to construct the LRF.
Further, deviation of the LRF affects the construction of the descriptor since
support partitioning is performed within the LRF. Second, the incomplete sup-
port directly affects the construction of the descriptor since voxels locating at
the missing part(s) become empty, where no shape feature can be extracted.

Due to the above challenges, many existing descriptors are sensitive to the
boundary points according to the evaluation in [17]. Therefore, boundary points
are usually ignored when applying existing descriptors to partial shape match-
ing [30,7], assuming that there is sufficient non-boundary scan surface for the
matching. On the other hand, matching boundary points will improve the chance
to correctly align different scans, especially when the scan overlap is small.

Our SGC descriptor is especially suitable for handling boundary points for
shape matching. First, the centroid feature that SGC employs is robust against
noise and varying point density, which usually happen at scan boundary. Second,
our descriptor comparison scheme allows matching descriptors computed from
either a complete or an incomplete support, see Figure 5. Third, we allow using
two different radii for constructing the LRF and the descriptor, i.e., r≤R, see
supports with varying sizes in Figure 5(left). By this, a smaller yet complete sup-
port can be employed for constructing a repeatable LRF while a larger support
allows encoding more (complete or incomplete) local shape for constructing the
descriptor. Based on our experiments, we find that r = 0.5R achieves the best
performance for matching boundary points when setting R = 20 pr.

5 Performance of the SGC Descriptor

This section evaluates the robustness of SGC with respect to various nuisances,
including noise, varying point density, distance to scan boundary, and occlusion.
We compare SGC with three state-of-the-art descriptors that work on point
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Table 1. Parameter settings of the four descriptors.

cloud data: spin image (SI) [24], 3DSC [10] and SHOT [11]. Table 1 presents a
detailed description of the parameter settings.

We perform the experiments on three publicly available datasets: the Bologna
dataset [31], UWA dataset [30], and Queen’s dataset [32]. Unlike the Bologna
dataset that synthesizes complete object models to generate scenes, the scenes
in the UWA and Queen’s dataset contain partial shape of object models. We em-
ploy the Bologna dataset to evaluate the descriptors’ performance with respect
to noise and varying point density (Subsection 5.1 & 5.2), the UWA dataset to
evaluate the descriptors’ performance with respect to distance to scan bound-
ary and occlusion (Subsection 5.3 & 5.4), and the Queen’s dataset to evaluate
improved performance by using descriptor saliency (Subsection 5.5).

We compare the descriptors’ performance using RP curves [33]. In detail, we
randomly select 1000 feature points in each model and find their corresponding
points in the scenes via the physical nearest neighbouring search. By matching
the scene features against the model features using each of the four descriptors,
an RP curve of the descriptor is generated.

5.1 Robustness to Noise

To evaluate robustness of the descriptors against noise, we add four different
levels of Gaussian noise with standard deviations of 0.1, 0.3, 0.5, and 1.0 pr to
each scene. The RP curves of the four descriptors are presented in Figure 6(a-d).

Fig. 5. (left) Match a support containing holes (in gray scan) with a support
close to boundary (in cyan scan) using SGC descriptors; (right) aligned scans
and supports.
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Fig. 6. RP curves of the four descriptors in the presence of (a-d) noise, (e-g)
point cloud downsampling, and (h) their combination.

Thanks to the robust centroid feature, the RP curves show that SGC performs
the best under all levels of noise, followed by SHOT and 3DSC.

5.2 Robustness to Varying Point Density

To evaluate robustness of the descriptors with respect to varying point density,
we downsample the noise free scenes to 1/2, 1/4 and 1/8 of their original point
density (pd). The RP curves in Figure 6(e-g) show that SGC outperforms all
other descriptors under all levels of downsampling. Figure 6(h) shows that SGC
performs the best when the input scans are downsampled and contain noise.

5.3 Robustness to Distance to Scan Boundary

We perform experiments for feature points within different ranges of distance
to the boundary, i.e., (0, 0.25R], (0.25R, 0.5R], (0.5R, 0.75R], and (0.75R, R].
Note that we set tuned r = 0.5R for SGC and r = R for all the other descrip-
tors. Thanks to the varying support radius and descriptor comparison scheme,
Figure 7 shows that SGC achieves the best performance for all the four cases.

5.4 Robustness to Occlusion

To evaluate performance of the descriptors under occlusion, we group sampled
feature points into two categories following [17], i.e., (60%, 70%] and (70%,80%]
occlusions. Figure 8(a&b) shows that SGC outperforms all the other descriptors
with a large margin since SGC allows handling feature points at scan boundary.
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Fig. 7. RP curves of feature points in different ranges of distance to the scan
boundary.

Fig. 8. (a&b) RP curves about occlusion. (c) CMC curves about descriptor
saliency.

5.5 Effectiveness of Descriptor Saliency

To demonstrate effectiveness of descriptor saliency, we compare our shape match-
ing approach with an exhaustive search to find corresponding feature points.
First, we build a descriptor-graph for descriptors sampled from all the five mod-
els in the Queen’s dataset [32] with k = 16. Next, we randomly select 1000
feature points on a scene and calculate their SGC descriptors. For each scene
descriptor, we retrieve its neighbours by searching the descriptor-graph with
saliency or exhaustive searching all the model descriptors. Here, we concern
how many neighbours we need to retrieve to ensure the corresponding descrip-
tor is included. Figure 8(c) shows standard Cumulated Matching Characteristics
(CMC) curves [34] by using the two approaches. The curves show that descriptor
saliency brings a certain amount of improvement in shape matching. In addition,
descriptor-graph speeds up the search of corresponding descriptors, where each
query process takes 0.5ms, much faster than the exhaustive search (62ms).

6 Applications

3D Object/Scene Reconstruction. To reconstruct a more complete model
from a set of scans, we build a descriptor-graph for all the scans. As the graph
has encoded k-NN for each descriptor (and the feature point), we search the
corresponding feature point (and its associated scan ID) locally within the k-
NN, and align the two scans based on the correspondence and merge them into a
larger point cloud. We keep aligning each of the remaining scans with the point



14 Keke Tang, Peng Song, and Xiaoping Chen

cloud and merging them until all scans are registered. Figure 9 shows two objects
and one scene reconstructed by our approach on different datasets [11,35].

3D Object Recognition. We conduct this experiment on the challenging
Queen’s dataset [32]. To represent the model library well with SGC, we remove
the noise in each model point cloud and build a descriptor-graph for descriptors
sampled from all the models. For a give scene scan, we also sample a number of
SGC descriptors. By searching a corresponding descriptor in the graph for a given
scene descriptor, we know the correspondence between a model in the library
and a partial scene, thus recognizing the object in the scene scan. Note that we
recognize a single object at a time and segment the object once recognized.

Figure 10(a&b) show the recognition result on an example scene. Figure 10(c)
shows that SGC based algorithm outperforms most existing methods including
VD-LSD [32], 3DSC [10] and spin image [24] based algorithms. RoPS based algo-
rithm is the current best 3D object recognition approach and it achieves slighter
better performance than SGC with additional mesh information of the scene
scans. In particular, the performance of our algorithm without using descriptor
saliency decreases about 10%, indicating the usefulness of the saliency.

7 Conclusion

We have presented a novel SGC descriptor for matching partial shapes repre-
sented by 3D point clouds. SGC integrates three novel components: 1) a local
shape description that encodes robust geometric centroid features; 2) a descrip-
tor comparison scheme that allows comparing supports with missing parts; and
3) a descriptor saliency measure that can identify distinct descriptors. By this,
SGC is robust against various nuisances in point cloud data when performing
partial shape matching. We have demonstrated SGC’s performance by compar-
isons with state-of-the-art descriptors and two partial matching applications.

Fig. 9. Our reconstruction results. (a) Super Mario; (b) Frog; and (c) Stage
scene.
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Fig. 10. Recognition results on the Queen’s dataset. (a) An example scene; (b)
our recognition results; and (c) recognition rates of the five models (values in
brackets are the results on the whole dataset while others are the results on the
subset as in [32]).
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