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Abstract. Are we ready to segment consumer stereo videos? The amount of this
data type is rapidly increasing and encompasses rich information of appearance,
motion and depth cues. However, the segmentation of such data is still largely un-
explored. First, we propose therefore a new benchmark: videos, annotations and
metrics to measure progress on this emerging challenge. Second, we evaluate sev-
eral state of the art segmentation methods and propose a novel ensemble method
based on recent spectral theory. This combines existing image and video segmen-
tation techniques in an efficient scheme. Finally, we propose and integrate into
this model a novel regressor, learnt to optimize the stereo segmentation perfor-
mance directly via a differentiable proxy. The regressor makes our segmentation
ensemble adaptive to each stereo video and outperforms the segmentations of the
ensemble as well as a most recent RGB-D segmentation technique.

1 Introduction

We witness a fast growing number of stereo streams on the web, due to the advent
of consumer stereo video cameras. Are we ready to expoit the rich cues which stereo
videos deliver? Our work focuses on segmentation of such data sources, as it is a com-
mon pre-processing step for further analysis such as action [1,2,3] or scene classifica-
tion [4].

We propose a new consumer stereo video challenge, to understand the opportunities
and foster the research in this new area. The new type of data combines the availability
of appearance and motion with the possibility of extracting depth information. Consid-
ering consumer videos means addressing a most abundant web data, which is however
also very heterogeneous, due to a variety of consumer cameras.

The new consumer stereo video challenge explicitly concerns the semantics of the
video. A number of existing benchmarks have offered ground truth depth and motion,
recurring to controlled recordings [5] or computer graphics simulations [6]. By contrast,
here we address stereo videos in the wild and specifically consider the semantics of
the data. While this might partly harm analysis (no true depth available), it addresses
directly what we are most interested in, the actors and objects in the videos.

We warm-start the challenge with a number of baselines, extending best available
image and video segmentations to the consumer stereo videos and their available fea-
tures, e.g. color, motion and depth. Most baselines perform well on some videos, how-
ever none performs well on all. As an example, motion segmentation techniques [7]
perform well while the object moves, but encounter difficulty with static video shots.
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Fig. 1: Overview of the proposed efficient adaptive stereo segmentation technique. Our
proposed segmentation ensemble model leverages the best available image and video
segmentation results efficiently. A regressor makes the ensemble model adaptive to each
stereo video, based on color, depth and motion features. In our novel learning frame-
work, the segmentation performance is optimized via a differentiable proxy.

On the other hand, camouflaged (but moving) objects impinge appearance-based im-
age [8] and video [9] segmentation techniques.

Thus motivated, we introduce in Section 5 a new efficient segmentation ensemble
model, which leverages existing results where they perform best. Furthermore, we intro-
duce in Section 6 the framework to learn a regressor which adapts the ensemble model
to each particular stereo video. The proposed technique is overviewed in Section 4 and
demonstrated in Section 7. Although only combining optimally existing results, our new
algorithm outperforms a most recent RGB-D segmentation technique [10].

2 Related Work

Video Segmentation Video segmentation has recently received much attention. It strikes
how diversely the segmentation problem is defined. [11] looks at the problem of mo-
tion segmentation by using optical-flow long term trajectories. [12] also uses trajecto-
ries (defined densely with superpixel-regions) and looks at motion but focuses on peo-
ple motion. [13] considers appearance to generate several image proposals and tracks
the most temporally consistent ones with motion. [9] addresses general unsupervised
video segmentation based on appearance and motion. [14] introduce an unsupervised,
geodesic distance based, salient video object segmentation method. [15] propose a non-
local consensus voting scheme defined over a graph of similar regions in the video se-
quence. We note that: 1. the strong diversity of existing algorithms hardly allows com-
bining their results; 2. none of those techniques may seamlessly generalize to stereo
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Fig. 2: Sample frames from the Consumer Stereo Video Segmentation Challenge
(CSVSC) dataset (left-right views) with the corresponding annotations. The stereo
videos differ in content (appearance, motion, number and type of subjects) and in cam-
era characteristics (intrinsic parameters, zoom, noise).

videos. This work proposes a solution to both aspects.

Depth/Stereo Segmentation There is a long tradition of work on 3D reconstruction
which estimates 3D coordinates, thus depth, from pair or multiple views [16,17]. These
efforts have been recently combined with reasoning on the object appearance and the
physical constraints of the 3D scene in the work of [18], whereby segmentation propos-
als are produced for semantic objects. The underlying assumption of a static scene for
these methods does not allow their extension to stereo video sequences which we con-
sider here. Additionally, the use of consumer cameras contrasts the high quality images
which they generally require.

Scene Flow and Stereo Videos Recent work addresses scene flow, the joint estimation
of optical flow and depth, assuming calibrated [19,20] or uncalibrated cameras [21].
Those do not address segmentation. Elsewhere, video segmentation is addressed by
considering RGB-D information [22,23,10,24], Kinect colour images with depth. The
stereo videos which we consider are not assumed calibrated nor from the same camera.
Since we consider consumer cameras, the videos are further unconstrained in terms of
spatio-temporal resolution, zooming, sensitivity and dynamical range, and present chal-
lenging motion blur effects and image latency.

Image/Video Co-Segmentation Recent researches on image and video co-segmentation
[25,26,27,28] tasks provide a way to jointly extract common objects across multiple im-
ages or videos. The general assumption of co-segmentation problem on commonality
of objects in a video set makes it a plausible fit to stereo video segmentation task when
we consider left and right videos of stereo pairs as two separate sequences in the same
set. However, from this perspective the depth cue in the stereo videos is not explicitly
explored which can provide rich information to outline objects while other features are
with ambiguities.
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Algorithm Selection and Combination There has been previous work which attempted
to select the best algorithm from a candidate pool depending on the specific task e.g. for
recognition on a budget [29,30] or active learning [31]. For optical flow, [32] presented
a supervised learning approach to predict the most suitable algorithm, based on the
confidence measures of the optical flow estimates. By contrast, Bai et al. [33] shows an
object cutout system where the segmentation is done by a set of local classifiers, each
adaptively combining multiple local features. Our proposed technique not only com-
bines different feature cues but also the available segmentation algorithms, weighting
their contributions rather than selecting one. We show experimentally that combination
provides better results. Our proposed approach relates closely to [8] which efficiently
combines image segmentation algorithms within the spectral clustering framework out-
performing the original results in the pool. Our extension of [8] is twofold: 1. we gener-
alize from image to stereo video segmentation; 2. we design and learn discriminatively
an adaptive scheme which allows to combine optimally the pool of video and segmen-
tation algorithms at each superpixel, based on the appearance and motion features of
the local pixels. Experimentally, the adaptive scheme further improves on the static
combination.

3 Consumer Stereo Video Segmentation Challenge (CSVSC)

We launch a Consumer Stereo Video Segmentation Challenge (CSVSC). The new dataset
consists of 30 video sequences which we have selected from Youtube based on their het-
erogeneity. In fact, the footage differs in the number of objects (2-15), the kind of por-
trayed actors (animals or people), the type of motion (a few challenging stop-and-move
scenes and objects entering or exiting the scene), the appearance visual complexity (also
in relation to the background, a few objects may be harder to discern) and the distance
of the objects from the camera (varying disparity and thus depth). Not less importantly,
we have selected videos acquired by different consumer stereo cameras, which implies
diverse camera intrinsic parameters, zooms and (as a further challenge) noise degrada-
tions such as motion blurs and camera shake. We illustrate a few sample sequences in
Figure 2.

Benchmark annotation and metrics. We have gathered human annotations and de-
fined metrics to quantify progress on the new benchmark. In particular, we equidistantly
sample 5 frames from the left view of all 30 videos to be labelled (150 frames are la-
belled in whole benchmark, while stereo videos altogether total to 1738 left-right-pair
frames).

As for the metrics, we have considered state-of-the-art image [34] and video seg-
mentation [35] metrics:
Boundary precision-recall (BPR). This reflects the per-frame boundary alignment be-
tween a video segmentation solution and the human annotations. In particular, BPR
indicates the F-measure between recall and precision [34].
Volume precision-recall (VPR). This measures the video segmentation property of
temporal consistency. As for BPR, VPR also indicates the F-measure between recall
and precision [35].
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Fig. 3: Sample disparity estimation. The first two columns are the original stereo pair
and their rectified images. The top-right picture is the disparity map computed by [36],
the bottom-right is the depth map obtained by optical flow [37] between the left and
right view.

It is of research interest to determine which of the metrics is best for learning. We
answer this question in Section 7, where we consider BPR and VPR alone or combined
by their: arithmetic mean (AM-BVPR) or harmonic mean (HM-BVPR), formulated
respectively as BPR+VPR

2 and 2·BPR·VPR
BPR+VPR .

Preparation of stereo videos Not having a ground truth depth may impinge com-
parison among techniques applied to the dataset. We define therefore an initial set of
comparisons among depth-estimation algorithms and make the results available.

We have considered the per-frame rectification of [38] and the stereo matching al-
gorithm of [36], filling-in the missing correspondences with [39]. Furthermore, we have
estimated depth by the optical flow algorithm of [37] between the right and left views.
We illustrate samples in Figure 3. Our initial findings are that estimating depth by opti-
cal flow leads to best downstream stereo segmentation outputs, which we use therefore
in the rest of the paper.

4 Efficient adaptive segmentation of stereo videos

We warm start the CSVSC challenge with a basic segmentation ensemble model. To this
purpose we first pre-process the stereo videos with a pool of state-of-the-art image and
video segmentation algorithms. Then we combine the segmentation outputs with a new
efficient segmentation ensemble model (cf. Section 5). Finally, we propose the learning
framework to adapt the combination parameters of each stereo video (cf. Section 6).

Figure 1 gives an overview of our ensemble model:
Pool of image and video segmentations. We select most recent algorithms which are
available online. These are used to segment the single frames (image segmentations)
and the left views of the stereo videos (video segmentations). This results in a pool of
segments which are respectively superpixels and supervoxels.
Efficient segmentation ensemble model. We bring together the pool of segments and
connect them to the stereo video voxels. The segmentation ensemble model is repre-
sented by a graph and parameterized by α and β’s, which weight the contribution of
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Fig. 4: Proposed video segmentation model. A number of K pooled image and video
segmentation outputs are brought together as hypotheses of grouping for the considered
video sequence (cf. Section 5 for details). We propose to replace the model of [8] (left)
with a new one (right) based on minimally overlapping superpixels, which is provably
equivalent but yields better efficiency (cf. Section 5.1)

each segmentation method. The model is accurate (voxel-based) but costly. We propose
therefore an efficient graph reduction which is exact, i.e. it provides the same solutions
as the voxel-based at a lower computational complexity.
Performance-driven adaptive combination. We compute stereo video features from
the stereo videos based on color, flow and depth. From these features, we regress the
combination parameters α and β’s, i.e. we combine optimally the pooled segmentation
outputs. To this purpose, we propose a novel regressorΞ and an inference procedure, to
learn the optimal regression parameters ξ from data. For the first time in literature, the
regressor parameters ξ are directly optimized according to the final performance mea-
sure P (resulting from the graph partitioning and the metric evaluation, cf. Section 6.2).
We achieve this with a novel differentiable performance proxy P̂ .

None of the state-of-the-art segmentation algorithms performs well with all of the
challenging consumer stereo videos (cf. experiments in Section 7). Both the contribu-
tions on the ensemble model (Section 5) and the performance-driven adaptive combi-
nation (Section 6) turn out important for better results.

5 Efficient segmentation ensemble model

We propose a graph for bringing together the available video segmentation outputs.
Additionally, we propose the use of recent spectral techniques to reduce the voxel graph
to one based on tailored superpixels/supervoxels, to improve efficiency without any
(proven) compromise on performance. The graph partitioning with spectral clustering
provides the segmentation output.

5.1 Unifying graph

Given a number of video segmentation outputs, we propose to bring all of them together
by defining a unifying graph.

Let us consider Figure 4 left. Each video segmentation algorithm provides group-
ings of the video sequence voxels. In the unifying graph, each pixel is therefore linked
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to the groupings to which it belongs. For example, one algorithm may compute spatio-
temporal tubes (supervoxels) [9], another one may compute image-based superpix-
els [34]. The video sequence voxels would then be linked to the tube to which they
belong (temporally) and to their superpixels (spatially). Altogether, the outputs from
the pool of video segmentations provide hypotheses of grouping for the video voxels.

More formally, we define a graph G = (V, E) to jointly represent the video and the
segmentation outputs. Nodes from the vertex set V are of two kinds:
Voxels are the video sequence elements which we aim to segment;
Pooled segmentation outputs are the computed spatial- and/or temporal-groupings,
providing voxel grouping hypotheses.

Further to being connected to the voxels, the pooled groupings from the same output
are also connected to their neighbors, which defines the video volume structure. Edges
are therefore of two types:
β-edges are between the groupings of each pooled segmentation k; we assume C fea-
tures (appearance, motion, etc. cf. Section 4) and distances based on βc-weighted fea-

tures: wkI,J = e−(β
1d

k1
I,J+···+βCd

kC
I,J ), where dkcI,J is the distance between superpixels I

and J from the k-th pooled output based on c-th feature.
α-edges are between the voxels and the grouping that it belongs to. The αk’s encode
the trust towards the respective K segmentation algorithm, ideally proportional to its
accuracy. In other words, the weights of alpha edges correspond to the importance of
individual segmentations, thus a higher αk can be interpreted as a larger contribution to
the overall performance, and shows the importance of individual segmentations

Partitioning graph G with spectral clustering is computationally demanding as the
number of nodes (and edges) depends linearly on the video voxels. The theory of [8]
reduces the complexity of a first stage of spectral clustering (the eigendecomposition)
but not of the second one (k-means), still of linear complexity in the number of voxels
(and thus bottleneck of [8]). We address both with graph reduction in the following
Section.

5.2 Improved efficiency with graph reduction

Let us consider again Figure 4. A huge number of voxels are similar both in appearance
and in motion and are therefore grouped in all segmentation outputs. When partitioning
the original graph G, these voxels are always segmented together. (The trivial proof
leverages their equal edges and therefore eigenvectors).

Rather than considering all voxels, we propose to reduce the original graph G to one
of smaller size GQ which is equivalent (provides exactly the same clustering solutions).
In GQ, we basically group all those voxels with equal connections into super-nodes
(reweighting their edges equivalently). This reduces the algorithmic complexity, as the
spectral clustering (both the eigendecomposition and the k-means) now depends only
on the number of super-nodes (which is determined for most pooled segmentation al-
gorithms by the number of objects, rather than voxels).

We identify the voxels with equal connections by intersecting the available segmen-
tation outputs. The result of the intersection is an oversegmentation into superpixels,
which can generate all pooled segmentation outputs by merging. We name these mini-
mally overlapping superpixels.
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More formally, the reduced graph GQ = (VQ, EQ) takes the minimally overlapping
superpixels as nodes VQ and the following edge weights

wQIJ =


∑
i∈I

∑
j∈J

wij if I 6= J

1

|I|
∑
i∈I

∑
j∈J

wij −
(|I| − 1)

|I|
∑
i∈I

∑
j∈V\I

wij if I = J
(1)

where |·| indicates the number of pixels within the superpixel, I, J are two minimally
overlapping superpixels, and wij stands for a generic edge of the original graph. Ac-
cording to (1), two pixels i and j are reduced if belonging to the same superpixel, i.e. if
I = J . These self-edges are of great importance, because spectral clustering normalizes
clusters by their accumulated volumes of merged pixels, i.e. summations of merged α’s.
(Since the superpixel connections are equal for the pixels within the same superpixel by
construction, the reduction is exact, cf. [40].)

5.3 Implementation details

The output segmentation is obtained by graph partitioning GQ with spectral cluster-
ing [41,42,43]. In particular, the labels of the minimally overlapping superpixels pro-
vide the voxel labels and thus the video segmentation solution.

In this work, we use K = 6 image and video segmentation algorithms: (1.) The
hierarchical image segmentation of [34]. We choose one layer from hierarchy based
on best performance on a validation set. We take three segmentation outputs by ap-
plying the Simple Linear Iterative Clustering (SLIC) [44] respectively on (2.) depth,
(3.) optical-flow [37] and the (4.) LAB-color coded cues, bilaterally filtered for noise
removal and edge preservation [45]. (5.) Hierarchical graph-based video segmentation
(GBH) [9]. We choose one layer from the hierarchy on the validation set. (6.) The mo-
tion segmentation technique (moseg) of [7].

While the features are computed on the stereo video. The graph is constructed on
one of the two views (the left one) of the stereo videos, which is then evaluated for the
segmentation quality. The contribution of segmentation outputs is weighted by α. β de-
fines the affinities between superpixels/supervoxels from the same pooled segmentation
output, weighting C = 3 feature cues based on mean Lab-color, depth and motion.

Note the importance of α’s and β’s in the graph G and therefore GQ. These param-
eters define how much each pooled segmentation output is trusted and how to compute
the similarity among superpixels/supervoxels in these outputs. Such parameters can be
defined statically (cf. [8]) or adjusted dynamically in a data-dependent fashion, as we
propose in the next Section.

6 Performance-driven adaptive combination

We propose a regressor Ξ to estimate the optimal segmentation ensemble parameters
α and β from the appearance-, motion- and depth-based features of the stereo videos.
(Cf. Figure 1 where the regressor is given by the red arrows.) Furthermore, we pro-
pose a novel inference framework to learn the regressor parameters ξ from the training
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stereo videos. (Cf. Figure 1 where the training is represented with blue arrows.) A new
differentiable performance proxy P̂ enables optimization driven by the stereo video
segmentation performance measure P .

6.1 Adaptive combination by regression

Let us define a regressor Ξ , with parameters ξ. Ξ takes as input a set of features F
computed from the stereo video and outputs the parameters α and β for the ensemble
segmentation model (i.e. the coefficients to optimally combine K segmentation outputs
from the pool based on C features, cf. 5.1). Intuitively, the regressor should select the
best segmentation outputs from the pool, based on the stereo video content. This would
imply, for example, a larger trust towards image- rather than motion-segmentation out-
puts, for those stereo videos where no motion is present.

While any type of regressor could be adopted, here in our approach we employ a
second order regressor Ξ which we parameterize by a matrix B. Overall, α and β are
computed as:

(α1, . . . , αK , β1, . . . , βC) = Ξ(F ; ξ) = FTBF (2)

where B is learnt with least squares and the input-output pairs of F and (α, β), and
ξ are the regression coefficients contained in B . We consider in F features based on
appearance, motion and depth. A large feature set is important to allow the regressor
to understand the type of stereo video (dynamic, static, textured etc.) For each feature,
we compute therefore histograms, means, medians, variances and entropies. We would
leave the learning framework to choose from the right feature, i.e. training the best
regressor Ξ . This should ideally consider the system performance P for optimization
or the tractable differentiable proxy which we discuss next.

6.2 Performance-driven regressor learning by differentiable proxies

Let us consider Figure 1. The α and β, regressed by Ξ according to features F , cor-
respond to a stereo video segmentation performance P . During training, we seek to
optimize Ξ for the maximum segmentation performance P :

Ξ̂ = max
Ξ

P (Ξ(F)) (3)

There are two main obstacles to our goal. First, typical video segmentation perfor-
mance metrics are not differentiable and therefore do not lend themselves to directly
optimizing an overall performance. To address this, we propose a differentiable perfor-
mance proxy P̂ in Section 6.2.

Second, α and β are not part of the objective (3) and have to be considered latent.
In Section 6.2, we define therefore an EM-based strategy to jointly learn the regressor
Ξ , α and β. An overview of our training procedure is given in Algorithm 1.

Metric Specific Performance Proxy In image segmentation, performance is generally
measured by boundary precision recall (BPR) and its associated best F-measure [34].
In video segmentation, benchmarks additionally include volume precision recall (VPR)
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Algorithm 1 Joint learning of the regressor Ξ and latent combination weights α, β
Require: ∀ training videos with initial set of parameters (α, β) and stereo video features F
1: repeat
2: Given the current estimates of (α, β), train the Ξ which regresses them from F
3: for all training video do
4: predict (α′′, β′′) = Ξ(F);
5: use (α′′, β′′) as initialization for (α̂, β̂) = argmaxα,β P̂ (α, β);
6: update (α, β) for the training video by (α̂, β̂);
7: end for
8: until Convergence or max. iterations exceeded

metrics [35]. Both these performance measures are plausible P , but neither of them
is differentiable, which complicates optimization. (We experiment on various perfor-
mance measures in Section 7.)

We propose to estimate a differentiable performance proxy P̂ which approximates
the true performance P . We do so by a second order approximation parameterized by
the matrix Y . Taking χ a vector of features which are sufficient to represent the stereo
video (at least as far as the estimation of (α, β) is concerned, will be described in the
next paragraph) we have:

(α̂, β̂) = argmax
α,β

P̂ (α, β) = argmax
α,β

χ>Y χ (4)

We perform training by sampling α and β, computing then input-output pairs of vector
χ and the real performance values P , and finally fitting the parameter matrix Y .

Stereo video representation by spectral properties. We are motivated by prior work on
supervised learning in spectral clustering [46,47,48] to represent the stereo videos by
their spectral properties. In particular, we draw on [46] and consider the normalized-cut
cost NCut (of the similarity graph, based on the training set groundtruth labelling) and
its lower bound TraceR. Our representation vector is therefore χ = [α, β,NCut,TraceR]

>.
In more details, given the indicator matrix E = {er}r=1···R where er ∈ RNm

,
er(i) = 1 if superpixel i belongs to r-th cluster otherwise = 0, and Nm is the number
of superpixels, we have:

NCut(α, β,E) =

R∑
r=1

e>r (D −W )er
e>r Der

TraceR(α, β) = R−
R∑
r=1

λr(L)

(5)

where D = diag(W1) is the degree matrix of W and λr(L) is the r-th eigenvalues of
the generalized Laplacian matrix L = D−1 ·W of the similarity matrix W .

Derivatives of Performance Proxy. Our performance proxy P̂ is now differentiable. For
gradient descent optimization, we use its derivatives w.r.t. parameters θ ∈

{
αk, βc

}
:

∂χ>Y χ
∂θ

=
∂χ>

∂θ
(Y + Y >)χ ∀θ ∈

{
αk, βc

}
(6)
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The derivatives of NCut and TraceR ∈ χ are:

∂(NCut)
∂θ

=

R∑
r=1

−e>r ∂W
∂θ ere

>
r Der + e>r Were

>
r
∂D
∂θ er

(e>r Der)2

∂(TraceR)
∂θ

= trace(V >
∂L(θ)

∂θ
V )

(7)

where V denotes the subspace spanned by the first R eigenvectors of L. Note that W ,
D and L are all parameterized by α and β. By plain chain rule differentiation, we
compute the gradients of the differentiable proxy P̂ in closed form. (Cf. All gradients
are presented in the supplementary material.)

Joint Learning of Regressor and Latent Parameter Combinations As stated in
Equation 3, we are interested in optimizing the performance P w.r.t. the regressor Ξ
and therefore the ensemble combination parameters α and β have to be treated as la-
tent variables. As described in Algorithm 1, we solve this by an EM-type optimization
scheme in which we iterate finding optimal parameters α and β and predicting new α
and β parameters based on the re-fitted regressor Ξ .

Intuitively, this scheme strikes a balance between the generalization capabilities of
the regressor and optimal parameters α and β. We found this to be particular important,
as in many cases a wide range of parameters leads to good results. Fixing the best
parameters as a learning target, leads to a more difficult regression and overall worse
performance. The metric specific performance proxy is continuously updated by using
the samples in a small neighborhood in order to improve the local approximation of the
desired metric P .

6.3 Implementation Details

As already noted, the computation of NCut at training involves the ground truth annota-
tions. In particular, the NCut for the entire video requires all frames labeled, while ours
and most segmentation datasets [35,49] only offer sparse labeling. Aggregating dense
optical flow over time allows to connect the sparsely annotated frames. The spatial and
temporal connections of these labeled frames are then used for the NCut computation.

Our representation vector χ in (4) consists of [α, β,NCut,TraceR]. We have empir-
ically found that this combination improves of the individual parts and subsets by 5%
and therefore we use the full vector in the following experiments.

In order to increase the number of examples for our training procedure, we di-
vide each video into subsequences so that each of them contains two frames with
groundtruth.

7 Experimental Results

We evaluate our proposed efficient and adaptive stereo video segmentation algorithm
(EASVS) on the CSVSC benchmark. In particular, first we test the pooled segmenta-
tion outputs, then we compare EASVS against relevant state-of-the-art on stereo video
sequences, finally we present an in-depth analysis of EASVS.
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Fig. 5: Results of the considered video segmentation algorithms (GBH [9], moseg [7],
SAS [8]) and our proposed EASVS on the CSVSC stereo video sequences using BPR
and VPR. No considered method performs consistently well on all videos. moseg may
achieve high performance of stereo videos with large and distinctive motion such as
”elephants3” and ”hens” but underperforms when motion is not strong, e.g. ”marine1”.
Complementary features are given by GBH. SAS combines statically (cf. segmentation
ensemble model of Section 5.1) the two video segmentation techniques as well as the
pooled image segments but also underperforms, because a static combination cannot
address the variety of the stereo videos.

7.1 Video segmentations and their (static) ensemble

Among the pooled segmentations (details in Section 5.3), we have included two state-
of-the-art video segmentation techniques: the motion segmentation algorithm of [7]
(moseg) and the graph-based hierarchical video segmentation method of [9] (GBH).

In Figure 5, we illustrate performance of each of moseg and GBH on all stereo
video sequences. (Cf. detailed comments in the figure caption.) As expected, none of
the two performs satisfactorily on all sequences. Rather, they have in most cases com-
plementary performance, e.g. moseg aiming for motion segmentation takes the lead on
sequences with evident motion and good optical flow estimates; while GBH overtakes
when spatio-temporal appearance cues are more peculiar in the visual objects.

A third technique illustrated in Figure 5 is the segmentation by aggregating super-
pixel method of [8] (SAS). This is an interesting baseline for our proposed algorithm.
SAS is based on a static combination of pooled segmentation outputs. We extend its
original image-based formulation to stereo videos by including into its pool the GBH
and moseg video segmentation methods, as we illustrate in Section 5.1.

Figure 5 clearly states that a static combination does not suffice to address the seg-
mentation of stereo videos. By contrast, quite surprisingly, trying to always pool all
video and image segmentation output with the same contributing weights turns out to
harm performance.

7.2 EASVS and the state-of-the-art

Our adaptive combination of pooled segmentation outputs poses the question of which
measure to use for learning. As mentioned in Section 3, the BPR and VPR measures
may push for adaptive algorithms with better boundaries or temporally-consistent vol-
umes. Averaging BPR and VPR may balance the two aspects, which we may achieve
by arithmetic (AM-BVPR) or harmonic mean (HM-BVPR).
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stereo video segmentation BPR VPR AM-BVPR HM-BVPR
GBH [9] 0.187 0.208 0.198 0.198
moseg [7] 0.247 0.285 0.266 0.264
SAS [8] 0.184 0.087 0.135 0.118

4D-seg [10] 0.128 0.146 0.137 0.120
VideoCoSeg [28] 0.238 0.140 0.189 0.169
Proposed EASVS 0.301 0.296 0.295 0.288

Oracle 0.371 0.505 0.423 0.428
Table 1: Results on the CSVSC benchmark. The proposed EASVS outperforms the
baselines from video segmentation, static ensemble, RGB-D video segmentation, and
video co-segmentation for all metrics. See detailed discussion in Section 7.2.

no depth fixed depth fixed α fixed β fixed both α, β proposed EASVS
HM-BVPR 0.254 0.276 0.270 0.276 0.272 0.288

Table 2: Analysis of the proposed EASVS, which shows the importance of the depth
cue as well as the proposed adaptive strategy. See Section 7.3 for detailed discussion.

In Table 1, we illustrate performance of EASVS against moseg, GBH and SAS,
measured according to the four available metrics (BPR, VPR, AM-BVPR, HM-BVPR).
For EASVS, the measured performance statistic has also been respectively used for
learning the adaptive ensemble segmentation model. (Since our approach involves learn-
ing, we address train/test splits with three-fold cross validation and the results are aver-
aged on three folds.) The results in the table match the intuition that only an adaptive
combination can successfully address all videos. Furthermore, our proposed EASVS
outperforms a recent depth video segmentation method [10] (4D-seg) by more than
50% on all measures, as well as a recent video co-segmentation algorithm [28] that we
run on each video stereo pair by 65%. This is confirmed by the qualitative examples
shown in Table 3.

We delve further into the understanding of the potential result improvements within
the EASVS framework with an oracle. In more details, we allow our algorithm to es-
timate the optimal segmentation-pool combination-parameters (α and β) by accessing
the ground truth performance measure P for each stereo video sequence. The higher
oracle performance by up to 70% (with the current representation and quadratic regres-
sors) anticipate future improvements with richer models and more data.

7.3 Deeper analysis of EASVS

In Table 2, we provide additional insights into EASVS. First, we experiment with 1)
no depth and 2) fixed depth contribution. The performance drops by 11.5% for 1) and
4.2% for 2) in HM-BVPR. This shows the importance of the depth cue within the full
system, which benefits for videos with motion or appearance ambiguities. Additionally,
this speaks in favor a the adaptive strategy. (Cf. 4D-seg [10] also leverages depth but
cannot reach the same performance as the adaptive depth combination.)
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video
frames

ground
truth

GBH
[9]

moseg
[7]

SAS
[8]

4D-seg
[10]

proposed EASVS
(BPR) (VPR) (AM-BVPR) (HM-BVPR)

Table 3: Examples of the proposed EASVS optimized for different metrics compared
to the state-of-the-art algorithms. Note how GBH outlines the object boundaries but
tends to over-segment, while moseg produces under-segmentations and fails to extract
objects without significant motion. The static combination scheme SAS cannot strike
good compromised parameters across all videos, which results in degraded results. 4D-
seg [10] is a clear leap forward but suffers from some of the drawbacks of GBH. Our
EASVS benefits the learning framework and the adaptive nature for a better output.

Second, we fix the combination parameters 3) α, 4) β, and 5) both α, β to the sin-
gle best values determined on the training set, therefore limiting the system adaptivity.
The performance drops by 6.3%, 4.2%, and 5.6% respectively. (Please note that al-
though conceptually fixing both α and β is the same as the SAS baseline, but for SAS
we use default parameters in the code of [8].) Once again, we find that adaptivity is
therefore crucial for the performance of our system and that both adaptive aspects are
strictly needed: weighting the pooled segmentation (α) and measuring similarity of the
resulting superpixels (β).

8 Conclusions

We have considered the emerging topic of consumer stereo cameras and proposed a
benchmark to evaluate progress for the task of segmentation with this interesting type
of data. The dataset is challenging and it includes diverse visual cues and camera setups.
None of the existing segmentation algorithms can perform well in all conditions.

Furthermore, we have introduced a novel efficient and adaptive stereo video seg-
mentation algorithm. Our method is capable of combining optimally a pool of segmen-
tation outputs from a number of ”expert” algorithms. The quality of results highlights
that combining single algorithms is promising and that research on such a framework is
perfectly orthogonal to pushing performance in the single niches, e.g. motion segmen-
tation, image segmentation, supervoxelization etc.
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