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Abstract. The human face is one of the most interesting subjects
in various computer vision tasks. In recent years, significant progress
has been made for generic image deblurring problem, but existing
popular sparse representation based deblurring methods are not able
to achieve excellent results on blurry face images. The failure of these
methods mainly stems from the lack of local/non-local self-similarity
prior knowledge. There are many similar non-local patches in the
neighborhood of a given patch in a face image, therefore, this property
should be effectively exploited to obtain a good estimation of the sparse
coding coefficients. In this paper, we introduce the current weighted non-
locally self-similarity (WNLSS) method [1], which is originally proposed
to remove the noise for natural images, into the face deblurring model.
There are two terms in the WNLSS sparse representation model, data
fidelity term and regularization term. Based on the theoretical analysis,
we show the properties of data fidelity term and regularization term also
can fit well for face deblurring problem. The results also demonstrate
that WNLSS method can achieve excellent performance in terms of both
synthetic and real blurred face dataset.

1 Introduction

Restoring a clear image from one blurred image has many important applica-
tions, such as video surveillance, remote sensing and so on. The process under a
spatially-invariant model can be generally formulated as

B = k ∗ I + ε, (1)

where I is the latent sharp image, B is the blurred (observed) image, k and
ε denote the blurred kernel and the noise term, respectively. In the past
decades, extensive studies have been conducted on the natural image deblurring
problem [2–8]. Since the ill-posed nature of image deblurring, additional prior
knowledge is need to constrain the solutions of Eq (1), such as heavy-tailed
gradient distributions [3, 9], regularization-based techniques [6, 10] and sparsity
constraints [11, 12]. Though the above prior knowledge and models work well
for natural images, they can not perform well when faced with specific object
category, such as face image. Compared with natural image, the face image has
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special non-local self-similarity (NSS) and less texture information, the work
[13] exploits the NSS patches to reconstruct the visual light face images from
the near infrared images. Since face is one of the most interesting objects in
various computer vision application, we focus on face image deblurring in this
paper.

The success of state-of-the-art image deblurring methods [2, 14, 15] mainly
depends on extraction of salient edges for kernel estimation. However, the edge
prediction step usually does not work well when faced with those blurred images
with less texture, such as face image, which is demonstrated in the work [8]. As an
alternative, the sparsity representation based deblurring methods have achieved
excellent results for natural image deblurring. The sparse representation of a
clear image I and an observed image B can be denoted as following:

min
aI

{

‖I −DaI‖+ λ‖aI‖p

}

(2)

and
min
aB

{

‖B − k ∗DaB‖+ λ‖aB‖p

}

(3)

where ‖•‖p is p-norm term (p is set to be 0 or 1) and it is expected that the coding
coefficients aI and aB are sparse as much as possible. D denotes a learning-
based over-completed dictionary and the parameter λ controls the contribution
of regularization item. It is impossible for us to obtain the I and its coding
coefficients aI , so we hope the coding coefficients of observed image aB which
is learned from our deblurring model could be close enough to aI . Therefore,
the reconstructed version of original image Î = DaB is considered as the final
deblurrring result. Due to l0-minimization problem is a NP-hard problem, the
l1-minimization problem is usually used in sparse representation model.

1.1 Motivation

For a blurred face image, it is very challenging to solve the sparse codes aB of
observed image B just by using sparsity constraint prior, just like Eq (3). The
universal prior knowledge easily leads to the solution of Eq (3) entrap into a local
minimum and we need more specific prior knowledge to design the objective
function of facial deblurring model. In this paper, we apply the existing WNLSS
sparse representation model [1] for the face image deblurring task. It is well
known that there are lots of non-local similar patches in a face image, as shown
in Figure 1. The self-similarity based coding coefficients az can be computed,
so that the more accurate estimation of sparse coding coefficients aB can be
obtained by exploiting these non-local redundancies. Moreover, many existing
sparse representation based deblurring methods [16, 17] take observed image B
as a long vector and obtain a global coding coefficients for the whole image
by solving the Eq (3). However, the solution of this kind of deblurring model
has been proved is unstable and time-consuming [18]. In order to make the
computational process stable and fast, we should provide smaller input signal
for deblurring model. Due to the face image has the NSS property, a given



Weighted Non-locally Self-similarity Sparse Representation for Face Deblurri 3

local patch can be reconstructed well by referencing its similar patches. We
intend to extract the dense local patches from the observed image and fed them
into our sparse representation model. So the input size of sparse representation
model is relatively small and we can obtain the stable and effective coding
coefficients for each local patch. To further reduce the patch-wise residual, the
weighted encoding technique [1] is introduced into the data fidelity term of
WNLSS method. The large pixel residual will lead to the reconstructed local
patch produce the ghost or ringing visual artifacts. The pixel i which has large
pixel residual is expected to assign small weights, so that this pixel’s effect on
the encoding of observed image over over-completed dictionary can be reduced.

Fig. 1. The illustration of non-local self-similarity in a face image. This property brings
us an alternative approach to estimate the sparse coding coefficients of reconstruction
signal. For solving the real coding coefficients of a given blurred patch, we just need to
search a set of similar patches and reconstruct this patch by linearly combining these
similar patches. Then, we estimate the real coding coefficients of a given blurred patch
by using the coding coefficients of the reconstructed patch.

The rest of the paper is organized as follows. we describe the deblurring
method in the Section 2 and investigate the performance of our method on both
synthetic and real blurry face datasets in Section 3 and conclude this paper in
Section 4.

2 Weighted non-locally self-similarity (WNLSS) sparse
representation

For an image I ∈ R
M×N and Ii denotes a local patch extracted at pixel i with

size m × n. The i-th lcoal patch Ii of I can be sparsely encoded as Ii = DaI,i.
In order to deblur I from B, B need to be sparsely coded with the learned
dictionary D by solving the Eq (3). Table 1 summary some notations which are
frequently used in our paper.
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Table 1. The notation table

Notations Descriptions

I The latent sharp (clear) image.
B The observed (blurred) image.
D The dictionary of sparse representation model.
aI The sparse coding coefficients of clear image I .
aB The sparse coding coefficients of observed image B.
az The estimated sparse coding coefficients based on facial NSS redundancies.
k The blur kernel (known in this paper).
e The residual vector between original signal and reconstructed signal.
W The weight matrix of weighted coding based data fidelity term.

2.1 The Dictionary Learning

In this section, we first discuss the dictionary D learning problem. Many existing
deblurring methods need some example images to learn dictionary [6, 8] and
this kind of example images are required to choose elaborately, so that the
learned dictionary can contain indispensable texture units. Therefore, the usage
of this kind of deblurring methods is restricted. Compared with this kind of
methods, we intend to learn dictionary D from the input image itself. If we
learn an universal dictionaries from the whole original image by using K-SVD
[19], the such over-completed dictionary may leads to expensive computational
cost and unstable solutions, this observation has been proved by the work [12].
How to obtain the stable and properly sparse solution is a key problem in
the dictionary learning process. Inspired by the work [20], all patches of the
input image are clustered into K centers by the traditional K-Means algorithm.
Other complicated clustering algorithms are also investigated in our experiment,
such as Gaussian Mixture Model, mean-shift and spectral clustering, but there
is no significant improvement of deblurring performance. So we select the K-
Means algorithm due to its simplicity. The problem of dictionary selection can
be denoted as follow:

min
Dk,Ck

{

‖Xk −DkCk‖
2
2 + λ‖Ck‖1

}

, (4)

where Xk denotes the kth clustered set and Ck is the coding coefficient matrix
over cluster-based dictionary Dk. Because of the elements in each cluster Xk

is similar, it is not necessary to form an over-completed dictionary in order to
describe the variation of Xk. So the compact representation is better than over-
completed representation due to the computational cost of dictionary learning.
For each Xk, we compute the principal components by PCA algorithm. To
compactly represent the discriminative pattern of each cluster set Xk, we just
select L eigenvectors [p1, · · · , pl, · · · , pL] corresponding to the largest eigenvalues
to construct the dictionary Dk.

For each patch need to be coded, only one sub-dictionary is adaptively
selected to code it and the coding coefficients of other all sub-dictionaries is set
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to be 0. Therefore, the sparse constraint in the existing sparsity-based deblurring
is also satisfied.

2.2 Formulation

In order to make the Eq (3) can work well on face image deblurring problem, the
weighted coding technique [1] and facial non-local self-similarity prior knowledge

is introduced into the data fidelity term ‖(B − k ∗Da)‖
2
2 and regularization term

R (a) of the WNLSS method, respectively. We will particularly describe these
two terms in the following parts.

Weighted coding based data fidelity term It is well known that the residual
between the deblurred image and observed image is directly related to the
performance of reconstruction method. It is naturally expected that the effect
of those pixels with large residual can be decreased. In order to minimize the
data fitting residual ‖B − k ∗Da‖

2
2 for all pixels, the weighted coding technique

is employed to weight the residual. Assume the overall residual vector is defined
as following:

e = [e1, e2, · · · , eN ] = B − k ∗Da, (5)

where ei = Bi−k∗Dai and e1, e2, · · · , eN are i.i.d samples. According to modern
robust estimation technique, each residual should be assigned a proper weight,

like ēi = w
1/2
i ei. Therefore, Eq (3) can be re-written as following:

min
W,aB

{

∥

∥

∥
W 1/2 (B − k ∗DaB)

∥

∥

∥

2

2
+ λ‖aB‖p

}

, (6)

where W is a diagonal weight matrix with Wii = wi. Obviously, the weight wi

and the magnitude of residual e2i should have inverse property, so the relationship
between these two items can be simply formulated as following:

wi = exp
(

−c0e
2
i

)

(7)

where c0 is the penalization parameters of the residual ei.

Non-local self-similarity based regularization term As above mentioned,
we expect aB is close to aI as much as possible, but aI is unknown for face
deblurring task. Fortunately, there is a great number of non-local redundancies
in face images, regardless of clear images or blurred images. So it can be expected
that providing a good estimation az for aI by exploiting the self-similarity
redundancies prior knowledge.

For a given patch Ii, a set of similar non-local patches Ipi are collected in a
large window around Ii. We select P most similar patches Ipi to Ii and assign

them different weight to predict the Îi as Îi =
P
∑

p=1
dpi I

p
i , where P denotes the
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number of similar patches, and the weight dpi can be computed as a traditional
regularized least-square problem:

min
di

‖Ii − Idi‖
2
2 + η ‖di‖

2
2 , (8)

where I =
[

I1i , I
2
i , · · · , I

P
i

]

and di =
[

d1i , d
2
i , · · · , d

P
i

]T
. The regularization term

‖di‖
2
2 is applied to enhance the stability of least-square solution and η is the

regularization parameter. Therefore, each patch Ii can be reconstructed by a
set of non-local similar patches Ipi . In other words, for an observed images, each

patch Ii and its NSS based reconstruction Îi can be denoted as Ii = DiaB,i and

Îi = Diaz,i. Accordingly, the az,i for the patch Îi can be obtained as:

az,i = DT
i Îi. (9)

In order to make the reconstruction Îi is close enough to Ii, obviously, the
coding coefficients of non-local reconstruction az,i should be similar as that of
observation aB,i. Therefore, the NSS information is introduced into the objective
function and the Eq (6) can be formulated as following:

min
W,aB

{

∥

∥

∥
W 1/2 (B − k ∗DaB)

∥

∥

∥

2

2
+ λ‖aB − az‖1

}

. (10)

It is the final objective function in our method, and the optimization process is
detailed in the next section.

2.3 Optimization

Assumed the blurring kernel k and dictionaryD are given, there are two variables
W and aB in the proposed formulation, we can effectively solve them by updating
one variable and fixing another.

Updating aB and fixing W When W is fixed, the objective function of
our method becomes the ℓ1-norm sparse coding problem. This problem can be
effectively solved via the iterative re-weighted scheme [21]. According to the

deduction of work [21], the (k + 1)th sparse coding a
(k+1)
B can be denoted as:

a
(k+1)
B =

(

DTWD + V (k+1)
)

−1
(

DTWB −DTWDaz
)

+ az, (11)

where V is a diagonal matrix and it can be initialized as an identity matrix. And

the diagonal element V
(k+1)

ii of auxiliary matrix V (k+1) can be updated as:

V
(k)
ii = λ/

(

(

a
(k)
B,i − a

(k)
z,i

)2

+ ε2
)1/2

, (12)

where ε is used to avoid the singular problem of solving process. The a
(k)
B and

a
(k)
z are the i-th element in the k-th iteration.
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Updating W and fixing aB Due to we have updated the observed coding
coefficients aB and NSS based coding coefficients az in the above section,
therefore, the residual e(k) can be computed as e(k) = B − Î(k). Further, the

weight elements w
(k)
ii in the k-iterations can be updated by the Eq (7).

Algorithm 1 summarizes the whole procedure of our deblurring method.

Algorithm 1 Weighted Non-Locally Self-Similarity (WNLSS) sparse represen-
tation method for face deblurring

Input: Blurred image B, Dictionary D, the iteration stop criterion σ.
Output: Deblurring image I .
1: Step 1 (Initialization):
2: Initialize the residual e by ê(0) = B − Î(0);
3: Initialize the weights W by Eq (7);
4: Initialize the NSS sparse coding coefficients az as the all-zeros vector;
5: Step 2 (Optimization):
6: Loop:
7: For j do
8: Step 2.1: Fix W and update aB by using Eq (11) and (12);
9: Step 2.2: Update the NSS coding coefficients az by Eq (9);
10: Step 2.3: Compute the residual e by e(j) = B − Î(j);
11: Step 2.4: Fix a and update W by using Eq (7);

12: Until
∥

∥

∥
Da

(j+1)
B −Da

(j)
B

∥

∥

∥

2

/
∥

∥

∥
Da

(j)
B

∥

∥

∥

2
≤ σ

13: Loop end
14: Return: The deblurred face image I = Φa

(J)
B .

3 Experiments

In this section, we first investigate the performance of the WNLSS model on
both synthetic and real blurred face images in Section 3.1 and 3.2, respectively.
To evaluate the quality of deblurring face image, we compute the Peak Signal-
to-Noise Ratio (PSNR) and perceptual quality metric FSIM [22] in this section.
The basic parameters of WNLSS are set to be as follows: The size of local patch
[m,n] is [7, 7], the dictionary size K is 200, the number of eigenvectors L is 70,
the regularization parameter λ is 0.1 and the iteration number J is 10.

3.1 Evaluate on synthetic blur images

For synthetic blurred image, we first use two widely applied blur kernels (i.e.,
uniform kernel and Gaussian kernel) to convolute the clear face images. Then
the synthetic blurred images with r × r uniform blur kernel and 2D Gaussian
blur kernel with standard deviation s can be obtained. In order to demonstrate
the robustness of the WNLSS method when faced with noise, we add some
additive white Gaussian noise (AWGN) into the blurred images. As the section
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of related work mentioned, we mainly compare the three kinds of deblurring
method, i.e., (1) the universal sparse representation based deblurring methods
[15, 14, 23, 24]; (2) face image based deblurring methods [8] and (3) natural image
based deblurring methods [3, 2, 4, 25].

(a) The Uniform Blur Kernel (b) The Gaussian Blur Kernel

Fig. 2. Examples of synthetic blurred face images with different blur parameters. (a)
The blurred face image with uniform kernel. From left to right and top to bottom is
that: original face image, the size of uniform kernel is 5×5, 7×7, 9×9, 11×11, 13×13.
(b) The blurred face image with Gaussian kernel. From left to right and top to bottom
is that: original face image, blurred face image with standard deviation 3, 5, 7, 9, 11.

Results on The Uniform Kernel We vary the size of uniform kernel r × r
from 5 to 13 with step size 2. The blurred samples with uniform kernel are
listed in Figure 2(a). The value of PSNR and FSIM on these blurred images of
different deblurring methods are reported in Table 2. The deblurring results of
9× 9 uniform kernel are also listed in Figure 3.

We can observe that the WNLSS method and the work [23] can achieve large
PSNR and FSIM improvement compared with other deblurring methods from
Table 2 and the uniform blur is basically removed in the face image from Figure 3.
The WNLSS method achieves better performance than other all methods on all
uniform blur cases. Though the work [8] is specially designed for face deblurring
problem, it requires a large enough exemplars dataset for the match of face
exemplar structure and its performance directly depends on the initialization
of predicted salient edges. When the exemplar dataset is not large enough, the
poor predicted edges may lead to the failure of kernel estimation from exemplar
structure. The other works also introduce the prior knowledge of sparsity and
edge selection into their models, but they do not achieve excellent performances
as our method. On the one hand, they do not consider the special structural
priors of face image and ignore the non-local self-similarity information. On the
other hand, compared with other sparse based deblurring methods, the weighted
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coding technique is introduced to further optimize the overall residual of a face
image. Therefore, the WNLSS achieve better deblurring performance on face
image.

Table 2. The values of PSNR (FSIM) by different methods with different size of uniform kernel

Kernel Size 5 7 9 11 13

Xu and Jia [15] 37.61 (0.9100) 35.30 (0.8438) 34.68 (0.8244) 33.61 (0.7524) 33.05 (0.7517)
Krishnan [14] 37.11 (0.8947) 35.96 (0.8540) 34.66 (0.8044) 33.85 (0.7605) 32.97 (0.7384)
Portilla [24] 36.53 (0.8737) 34.70 (0.8004) 33.62 (0.7373) 32.82 (0.6838) 32.17 (0.6365)
Kheradmand [23] 36.96 (0.8152) 36.67 (0.8096) 36.17 (0.8187) 36.13 (0.8267) 36.13 (0.8325)
Pan [8] 39.55 (0.9167) 37.50 (0.8845) 35.56 (0.8350) 34.51 (0.8017) 34.34 (0.7997)
Shan [3] 36.88 (0.8642) 35.60 (0.8291) 34.74 (0.8012) 33.34 (0.7202) 32.63 (0.6651)
Cho [2] 36.81 (0.8504) 34.63 (0.8032) 33.83 (0.7410) 33.56 (0.7017) 33.04 (0.6653)
Xu [4] 37.99 (0.9137) 35.86 (0.8651) 35.48 (0.8479) 34.77 (0.8336) 34.06 (0.8051)
Beck [25] 37.16 (0.8210) 36.84 (0.8285) 36.12 (0.8234) 35.50 (0.8141) 34.90 (0.8058)
Ours 39.86 (0.8966) 38.78 (0.8836) 37.86 (0.8703) 37.29 (0.8617) 36.61 (0.8500)

Fig. 3. The comparison of deblurring performance on the face image with 9×9 uniform
kernel. From left to right and top to bottom is that: [15], [14], [24], [23], [8], [3], [2], [4],
[25] and our WNLSS.

Results on The Gaussian Kernel In this subsection, we set the size of
Gaussian kernel to be 25 × 25 and the standard deviation from 3 to 11 with
step size 2. The blurred samples with Gaussian kernel are listed in Figure 2(b).
The value of PSNR and FSIM on these blurred images of different deblurring
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methods are reported in Table 3. The deblurring results of Gaussian kernel with
standard deviation 3 are also listed in Figure 4.

Different from the observation of uniform kernel, our method work better
than other methods on small Gaussian blur and the work [23] can achieve
better performance on large blur cases. For a noisy and blurred image, the work
[23] first need to remove the contribution of the noise and then perform the
deblurring operation. And the performance of denoising is directly related to
the initialization of blurring matrix. However, our method need not to explicitly
remove the AWGN of the face image and the objective function of WNLSS
is naturally robust to the AWGN. What is more, the computational cost in
terms of time complexity of the work [23] can also not be ignored. Compared
with the single loop in the WNLSS model, the work [23] has the outer loop and
inner loop. Therefore, it takes more computational time for large blur, regardless
of encountering the uniform kernel or Gaussian kernel. For the Gaussian blur
kernel with standard deviation 5, the work [23] takes 26.94 seconds and our
method only takes 13.08 seconds in a PC with 2.0 GHz CPU, the WNLSS
method just use half computational time to achieves similar performance with
the work [23]. Compared with other deblurring methods except the work [23],
the WNLSS method also achieves better PSNR and FSIM performance due to
the introduction of weighted coding and non-local self-similarity priors.

Table 3. The values of PSNR (FSIM) on the Gaussian kernel with different standard deviation
of face image

Standard Deviation 3 5 7 9 11

Xu and Jia [15] 34.69 (0.8381) 32.21 (0.7256) 31.79 (0.6965) 31.45 (0.6708) 31.20 (0.6513)
Krishnan [14] 35.44 (0.8452) 33.63 (0.7692) 32.46 (0.7179) 31.65 (0.6787) 31.28 (0.6511)
Portilla [24] 33.57 (0.7523) 31.95 (0.6787) 31.27 (0.6430) 30.97 (0.6262) 30.82 (0.6163)
Kheradmand [23] 37.16 (0.8804) 35.10 (0.8230) 34.04 (0.7908) 34.25 (0.8030) 34.36 (0.8081)
Pan [8] 36.48 (0.8711) 34.29 (0.7995) 32.80 (0.7401) 32.34 (0.7298) 32.06 (0.7215)
Shan [3] 34.97 (0.8271) 33.44 (0.7643) 32.09 (0.6991) 31.47 (0.6516) 31.30 (0.6216)
Cho [2] 34.97 (0.7805) 32.35 (0.6611) 30.10 (0.6426) 31.08 (0.6145) 31.07 (0.6207)
Xu [4] 34.06 (0.8126) 33.32 (0.7557) 32.47 (0.7265) 32.12 (0.7181) 31.91 (0.7151)
Beck [25] 36.28 (0.8314) 34.51 (0.7884) 33.18 (0.7392) 32.91 (0.7309) 32.76 (0.7219)
Ours 37.29 (0.8674) 34.75 (0.7983) 33.44 (0.7561) 33.59 (0.7693) 33.51 (0.7725)

3.2 Evaluate on real blur images

For real blurred image, we select two real blurred image from the Point-and-
Shoot Cameras (PaSC) [26]. The face images from PaSC dataset are shot
by the point-and-shoot camera, therefore, there are not only motion blur but
also poor focus. Since the focus of our work is to restore the blurred image
by the known kernel, we borrow the motion blur kernel estimation from the
work [27] to estimate the blur kernel. What is more, it it impossible for us
to obtain the original clear face image from the PaSC dataset, therefore, we
can not compute the PSNR and FSIM values like the above section. We
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Fig. 4. The comparison of deblurring performance on the face image with Gaussian
kernel of standard deviation 5. From left to right and top to bottom is that: [15], [14],
[24], [23], [8], [3], [2], [4], [25] and our WNLSS.

just evaluate the deblurring performance by visual observation. The
deblurring performance of the work [8], the work [23] and our work is significantly
better than other methods. Therefore, for a more difficult deblurring task, we
just compare these methods on real blur face images.

We show the original blurred face image and deblurring results by the work
[8], the work [23] and our work in Figure 5 and Figure 6. We can observe that
the face image are deblurred by the WNLSS method are much clear than other
methods. Since the WNLSS method can accurately restructure a local patch
by referencing other similar patches and further reduce the coding residual by
using the weighted coding methodology, therefore, it can restructure more detail
information on real blurred and noisy face images. The estimated kernels from
[27] have some bias with the real unknown blur kernels, but it still achieves
excellent performances in this case, it further demonstrates the WNLSS method
is robust to the kernel estimation error. Though the work [8] is specially designed
for face deblurring problem, it requires a large enough exemplars dataset for the
match of face exemplar structure and its performance directly depends on the
initialization of predicted salient edges. For the blurred Figure 5, we manually
locate the initial contours of blurred face images and fed the contours information
into their model, and for the blurred Figure 6, we search its best matched
contours in the author provided exemplar dataset. The work [8] produces some
visual ringing and ghost artifacts in the Figure 6, and the deblurring result are
much worse than other two methods when there is a mismatch between the
predicted salient edges and real edges (e.g. Figure 6). For another work [23],
since it is designed by using normalized graph Laplacian, it works well when
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faced with the structural blur kernel (i.e., Gaussian kernel). However, it can not
restore more facial detail information by using the pre-defined structural prior
knowledge when faced with real blur image. Moreover, this work [23] comprises of
outer and inner loop and takes a large amount of time to deblur the complicated
blurred image.

(a) (b) (c) (d) (e)

Fig. 5. The deblurring performance comparison on real blurred face images. From left
to right is that: original real image, deblurred image by [8], deblurred image by [23],
deblurred image by our WNLSS and close-up view for detail presentation.

(a) (b) (c) (d) (e)

Fig. 6. The deblurring performance comparison on real blurred face images. From left
to right is that: original real image, deblurred image by [8], deblurred image by [23],
deblurred image by our WNLSS and close-up view for detail presentation.

4 Conclusion

In this paper, we introduce the existing weighted non-local self-similarity sparse
model [1] into face deblurring task and verify that the model is suitable for face
image deblurring. In theory, on the one hand, the weighted coding technology
can effectively reduce the coding residual of sparse representation model, so
that the pixels with large residual have smaller effect on the whole deblurring
process. On the other hand, the estimation of real unknown coding coefficients
can be learned by exploiting the NSS property of face image. Extensive results
on synthetic and real blurred face image show the WNLSS achieves competitive
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performance compared with other state-of-the-art methods and demonstrates
the effectiveness and robustness of the WNLSS method.
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