Skip to main content

3D Line Segment Reconstruction in Structured Scenes via Coplanar Line Segment Clustering

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

Abstract

This paper presents a new algorithm aiming for 3D Line Segment (LS) reconstruction in structured scenes that are comprised of a set of planes. Due to location imprecision of image LSs, it often produces many erroneous reconstructions when reconstructing 3D LSs by triangulating corresponding LSs from two images. We propose to solve this problem by first recovering space planes and then back-projecting image LSs onto the recovered space planes to get reliable 3D LSs. Given LS matches identified from two images, we estimate a set of planar homographies and use them to cluster the LS matches into groups such that LS matches in each group are related by the same homography induced by a space plane. In each LS match group, the corresponding space plane can be recovered from the 3D LSs obtained by triangulating all the LS correspondences. To reduce the incidence of incorrect LS match grouping, we formulate to solve the LS match grouping problem into solving a multi-label optimization problem. The advantages of the proposed algorithm over others in this area are that it can generate more complete and detailed 3D models of scenes using much fewer images and can recover the space planes where the reconstructed 3D LSs lie, which is beneficial for upper level applications, like scene understanding and building facade extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors of Line3D++ made the source code of Line3D++ publicly available, but did not do so for its preliminary versions. So, we can only compare our measure data with the reported data in the papers.

References

  1. Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building Rome in a day. Commun. ACM 54, 105–112 (2011)

    Article  Google Scholar 

  2. Baillard, C., Schmid, C., Zisserman, A., Fitzgibbon, A.: Automatic line matching and 3D reconstruction of buildings from multiple views. In: ISPRS Conference on Automatic Extraction of GIS Objects from Digital Imagery (1999)

    Google Scholar 

  3. Bartoli, A., Sturm, P.: Structure-from-motion using lines: representation, triangulation, and bundle adjustment. Comput. Vis. Image Underst. 100, 416–441 (2005)

    Article  Google Scholar 

  4. Bay, H., Ess, A., Neubeck, A., Van Gool, L.: 3D from line segments in two poorly-textured, uncalibrated images. In: 3DPVT (2006)

    Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1222–1239 (2001)

    Article  Google Scholar 

  6. Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest point algorithm. In: ICPR (2002)

    Google Scholar 

  7. Delmerico, J.A., David, P., Corso, J.J.: Building facade detection, segmentation, and parameter estimation for mobile robot stereo vision. Image Vis. Comput. 31, 841–852 (2013)

    Article  Google Scholar 

  8. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 96, 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1362–1376 (2010)

    Article  Google Scholar 

  10. Habib, A.F., Morgan, M., Lee, Y.R.: Bundle adjustment with selfcalibration using straight lines. Photogram. Rec. 17, 635–650 (2002)

    Article  Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Hofer, M., Maurer, M., Bischof, H.: Improving sparse 3D models for man-made environments using line-based 3D reconstruction. In: 3DV (2014)

    Google Scholar 

  13. Hofer, M., Wendel, A., Bischof, H.: Incremental line-based 3D reconstruction using geometric constraints. In: BMVC (2013)

    Google Scholar 

  14. Hofer, M., Maurer, M., Bischof, H.: Efficient 3D scene abstraction using line segments. Comput. Vis. Image Underst. (2016). doi:10.1016/j.cviu.2016.03.017

  15. Li, K., Yao, J., Lu, X., Xia, M., Li, L.: Joint point and line segment matching on wide-baseline stereo images. In: WACV (2016)

    Google Scholar 

  16. Kim, C., Manduchi, R.: Planar structures from line correspondences in a Manhattan World. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 509–524. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16865-4_33

    Google Scholar 

  17. Jain, A., Kurz, C., Thormahlen, T., Seidel, H.P.: Exploiting global connectivity constraints for reconstruction of 3D line segments from images. In: CVPR (2010)

    Google Scholar 

  18. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E.: Large scale multi-view stereopsis evaluation. In: CVPR (2014)

    Google Scholar 

  19. Luong, Q.-T., Viéville, T.: Canonical representations for the geometries of multiple projective views. Comput. Vis. Image Underst. 64, 193–229 (1996)

    Article  Google Scholar 

  20. Matinec, D., Pajdla, T.: Line reconstruction from many perspective images by factorization. In: CVPR (2003)

    Google Scholar 

  21. Micusik, B., Wildenauer, H.: Structure from motion with line segments under relaxed endpoint constraints. In: 3DV (2014)

    Google Scholar 

  22. Micusik, B., Wildenauer, H.: Descriptor free visual indoor localization with line segments. In: 3DV (2015)

    Google Scholar 

  23. Pan, J.: Coherent scene understanding with 3D geometric reasoning. Ph.D. thesis, Carnegie Mellon University (2014)

    Google Scholar 

  24. Pham, T.T., Chin, T.J., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1658–1671 (2014)

    Article  Google Scholar 

  25. Přibyl, B., Zemčík, P., Čadík, M.: Camera pose estimation from lines using Plücker coordinates. In: BMVC (2015)

    Google Scholar 

  26. Ramalingam, S., Brand, M.: Lifting 3D Manhattan lines from a single image. In: ICCV (2013)

    Google Scholar 

  27. Schindler, G., Krishnamurthy, P., Dellaert, F.: Line-based structure from motion for urban environments. In: 3DPVT (2006)

    Google Scholar 

  28. Sinha, S.N., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: ICCV (2009)

    Google Scholar 

  29. Smith, P., Reid, I.D., Davison, A.J.: Real-time monocular SLAM with straight lines. In: BMVC (2006)

    Google Scholar 

  30. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25, 835–846 (2006)

    Article  Google Scholar 

  31. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80, 189–210 (2008)

    Article  Google Scholar 

  32. Spetsakis, M.E., Aloimonos, J.Y.: Structure from motion using line correspondences. Int. J. Comput. Vis. 4, 171–183 (1990)

    Article  Google Scholar 

  33. Strecha, C., Hansen, W.V., Gool, L.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: CVPR (2008)

    Google Scholar 

  34. Taylor, C.J., Kriegman, D.J.: Structure and motion from line segments in multiple images. IEEE Trans. Pattern Anal. Mach. Intell. 17, 1021–1032 (1995)

    Article  Google Scholar 

  35. Teboul, O., Simon, L., Koutsourakis, P., Paragios, N.: Segmentation of building facades using procedural shape priors. In: CVPR (2010)

    Google Scholar 

  36. Werner, T., Zisserman, A.: New techniques for automated architectural reconstruction from photographs. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 541–555. Springer, Heidelberg (2002). doi:10.1007/3-540-47967-8_36

    Chapter  Google Scholar 

  37. Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)

    Google Scholar 

  38. Zhang, L., Koch, R.: Structure and motion from line correspondences: representation, projection, initialization and sparse bundle adjustment. J. Vis. Commun. Image Represent. 25, 904–915 (2014)

    Article  Google Scholar 

  39. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: ICCV (1999)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China (Project No. 41571436), the National Natural Science Foundation of China under Grant 91438203, the Hubei Province Science and Technology Support Program, China (Project No. 2015BAA027), the Jiangsu Province Science and Technology Support Program, China (Project No. BE2014866), and the South Wisdom Valley Innovative Research Team Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, K., Yao, J., Li, L., Liu, Y. (2017). 3D Line Segment Reconstruction in Structured Scenes via Coplanar Line Segment Clustering. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics