Skip to main content

Model Development and Incremental Learning Based on Case-Based Reasoning for Signal and Image Analysis

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10149))

  • 538 Accesses

Abstract

Over the years, image mining and knowledge discovery gained importance to solving problems. They are used in developing systems for automatic signal analysis and interpretation. The issues of model building and adaption, allowing an automatic system to adjust to the changing environments and moving objects, became increasingly important. One method of achieving adaptation in model building and model learning is Case-Based Reasoning (CBR). Case-Based Reasoning can be seen as a reasoning method as well as an incremental learning and knowledge acquisition method. In this paper we provide an overview of the CBR process and its main features: similarity, memory organization, CBR learning, and case-base maintenance. Then we review, based on applications, what has been achieved so far. The applications we are focusing on are meta-learning for parameter selection, image interpretation, incremental prototype-based classification, novelty detection and handling, and 1-D signal interpretation represented by a 0_1 sequence. Finally, we will summarize the overall concept of CBR usage for model development and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithm. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  2. Bagherjeiran, A., Eick, C.F.: Distance function learning for supervised similarity assessment. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals. Studies in Computational Intelligence, pp. 91–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bergmann, R., Wilke, W.: On the role of abstraction in case-based reasoning. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS (LNAI), vol. 1168, pp. 28–43. Springer, Heidelberg (1996). doi:10.1007/BFb0020600

    Chapter  Google Scholar 

  4. Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-oriented matching: a new research direction for case-based reasoning. In: Schnurr, H.-P., et al. (eds.) Professionelles Wissensmanagement, pp. 20–30. Shaker Verlag (2001)

    Google Scholar 

  5. Bellazzi, R., Montani, S., Portinale, L.: Retrieval in a prototype-based case library: a case study in diabetes therapy revision. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 64–75. Springer, Heidelberg (1998). doi:10.1007/BFb0056322

    Chapter  Google Scholar 

  6. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  7. Bhanu, B., Dong, A.: Concepts learning with fuzzy clustering and relevance feedback. In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 102–116. Springer, Heidelberg (2001). doi:10.1007/3-540-44596-X_9

    Chapter  Google Scholar 

  8. Bichindaritz, I.: Memory structures and organization in case-based reasoning. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals. Studies in Computational Intelligence, pp. 175–194. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Bichindaritz, I.: Mémoire: a framework for semantic interoperability of case-based reasoning systems in biology and medicine. Artif. Intell. Med. 36(2), 177–192 (2006)

    Article  Google Scholar 

  10. Branting, L.K.: Integrating generalizations with exemplar-based reasoning. In: Proceedings of the 11th Annual Conference of Cognitive Science Society. Ann Arbor, MI, Lawrence Erlbaum, pp. 129–146 (1989)

    Google Scholar 

  11. CBR Commentaries. Knowl. Eng. Rev. 20(3)

    Google Scholar 

  12. Craw, S.: Introspective learning to build Case-Based Reasoning (CBR) knowledge containers. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 1–6. Springer, Heidelberg (2003). doi:10.1007/3-540-45065-3_1

    Chapter  Google Scholar 

  13. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987). Kluwer Academic Publishers, Hingham, MA, USA

    Google Scholar 

  14. Frucci, M., Perner, P., di Baja, G.S.: Case-based reasoning for image segmentation by watershed transformation. In: Perner, P. (ed.) Case-Based Reasoning on Signals and Images, pp. 319–353. Springer, Heidelberg (2007)

    Google Scholar 

  15. Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-based reasoning. Knowl. Eng. Rev. 20(3), 289–292 (2005)

    Article  Google Scholar 

  16. Iglezakis, I., Reinartz, T., Roth-Berghofer, T.R.: Maintenance memories: beyond concepts and techniques for case base maintenance. In: Funk, P., González Calero, Pedro, A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 227–241. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28631-8_18

    Chapter  Google Scholar 

  17. Jaenichen, S., Perner, P.: Conceptual clustering and case generalization of two dimensional forms. Comput. Intell. 22(3/4), 177–193 (2006)

    Article  MathSciNet  Google Scholar 

  18. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall Inc, Upper Saddle River (1988)

    MATH  Google Scholar 

  19. Law, Y.-N., Zaniolo, C.: An adaptive nearest neighbor classification algorithm for data streams. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 108–120. Springer, Heidelberg (2005). doi:10.1007/11564126_15

    Chapter  Google Scholar 

  20. Little, S., Salvetti, O., Perner, P.: Evaluation of feature subset selection, feature weighting, and prototype selection for biomedical applications. J. Softw. Eng. Appl. 3, 39–49 (2010)

    Article  Google Scholar 

  21. De Mantaras, R.L., Cunningham, P., Perner, P.: Emergent case-based reasoning applications. Knowl. Eng. Rev. 20(3), 325–328 (2005)

    Article  Google Scholar 

  22. Markou, M., Singh, S.: Novelty detection: a review – part 1. Stat. Approaches Sig. Process. 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  23. Nagy, G., Nartker, T.H.: Optical Character Recognition: An Illustrated Guide to the Frontier. Kluwer, London (1999)

    Google Scholar 

  24. Nilsson, M., Funk, P.: A case-based classification of respiratory sinus arrhythmia. In: Funk, P., González Calero, Pedro, A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 673–685. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28631-8_49

    Chapter  Google Scholar 

  25. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  26. Perner, P.: Introduction to case-based reasoning for signals and images. In: Perner, P. (ed.) Case-Based Reasoning on Signals and Images, pp. 1–4. Springer, Heidelberg (2007)

    Google Scholar 

  27. Perner, P.: Data Reduction Methods for Industrial Robots with Direct Teach-in-Programing, Second Unchanged Edition. IBAI Publishing, Fockendorf. ISBN 978-3-940501-16-5

    Google Scholar 

  28. Perner, P.: Why case-based reasoning is attractive for image interpretation. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 27–43. Springer, Heidelberg (2001). doi:10.1007/3-540-44593-5_3

    Chapter  Google Scholar 

  29. Perner, P.: An architecture for a CBR image segmentation system. J. Eng. Appl. Artif. Intell. 12(6), 749–759 (1999)

    Article  Google Scholar 

  30. Perner, P., Perner, H., Müller, B.: Similarity guided learning of the case description and improvement of the system performance in an image classification system. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 604–612. Springer, Heidelberg (2002). doi:10.1007/3-540-46119-1_44

    Chapter  Google Scholar 

  31. Perner, P.: Case-base maintenance by conceptual clustering of graphs. Eng. Appl. Artif. Intell. 19(4), 295–381 (2006)

    Google Scholar 

  32. Perner, P.: Concepts for novelty detection and handling based on a case-based reasoning process scheme. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 21–33. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73435-2_3

    Google Scholar 

  33. Perner, P., Holt, A., Richter, M.: Image processing in case-based reasoning. Knowl. Eng. Rev. 20(3), 311–314 (2005)

    Article  Google Scholar 

  34. Perner, P.: Using CBR learning for the low-level and high-level unit of a image interpretation system. In: Singh, S. (ed.) Advances in Pattern Recognition, pp. 45–54. Springer, Heidelberg (1998)

    Google Scholar 

  35. Perner, P.: Prototype-based classification. Appl. Intell. 28(3), 238–246 (2008)

    Article  Google Scholar 

  36. Perner P.: A novel method for the interpretation of spectrometer signals based on delta-modulation and similarity determination. In: Barolli, L., Li, K.F., Enokido, T., Xhafa, F., Takizawa, M. (eds.) Proceedings IEEE 28th International Conference on Advanced Information Networking and Applications AINA 2014, Victoria, Canada, pp. 1154–1160 (2014). doi:10.1109/AINA.2014.44

  37. Perner, P.: Representation of 1-D signals by a 0_1 sequence and similarity-based interpretation: a case-based reasoning approach. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern Recognition. LNCS (LNAI), vol. 9729, pp. 728–739. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41920-6_55

    Chapter  Google Scholar 

  38. Perner, P.: Case-based reasoning and the statistical challenges II. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.). AISC, vol. 242, pp. 17–38. Springer, Heidelberg (2014). doi:10.1007/978-3-319-02309-0_2

    Chapter  Google Scholar 

  39. Perner, P., Attig, A.: Meta-learning for image processing based on case-based reasoning. In: Bichindaritz, I., Vaidya, S., Jain, A., Jain, L.C. (eds.) Computational Intelligence in Healthcare 4. SIC, vol. 309, pp. 229–264. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Perner, P.: Case-based reasoning for image analysis and interpretation. In: Chen, C., Wang, P.S.P. (eds.) Handbook on Pattern Recognition and Computer Vision, 3rd Edition, pp. 95–114. World Scientific Publisher (2005)

    Google Scholar 

  41. Perner, P.: Novelty detection and in-line learning of novel concepts according to a case-based reasoning process schema for high-content image analysis in system biology and medicine. Comput. Intell. 25(3), 250–263 (2009)

    Article  MathSciNet  Google Scholar 

  42. Perner, P.: Concepts for novelty detection and handling based on a case-based reasoning process scheme. Eng. Appl. Artif. Intell. 22(1), 86–91 (2009)

    Article  Google Scholar 

  43. Richter, Michael, M.: Introduction. In: Lenz, Mario, Burkhard, Hans-Dieter, Bartsch-Spörl, Brigitte, Wess, Stefan (eds.). LNCS (LNAI), vol. 1400, pp. 1–15. Springer, Heidelberg (1998). doi:10.1007/3-540-69351-3_1

    Chapter  Google Scholar 

  44. Richter, M.M.: Similarity. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals. Studies in Computational Intelligence, pp. 1–21. Springer, Heidelberg (2008)

    Google Scholar 

  45. Sankoff, D., Kruskal, J.B. (eds.): Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Readings (1983)

    Google Scholar 

  46. Schank, R.C.: Dynamic Memory. A theory of reminding and learning in computers and people. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  47. Schmidt, R., Gierl, L.: Temporal abstractions and case-based reasoning for medical course data: two prognostic applications. In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 23–34. Springer, Heidelberg (2001). doi:10.1007/3-540-44596-X_3

    Chapter  Google Scholar 

  48. Shapiro, L.G., Atmosukarto, I., Cho, H., Lin, H.J., Ruiz-Correa, S.: Similarity-based retrieval for biomedical applications. In: Perner, P. (ed.) Case-Based Reasoning on Signals and Images. SIC, vol. 73, pp. 355–388. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  49. Smith, E.E., Douglas, L.M.: Categories and Concepts. Harvard University Press, Cambridge (1981)

    Book  Google Scholar 

  50. Smith, L.B.: From global similarities to kinds of similarities: the construction of dimensions in development. In: Smith, L.B. (ed.) Similarity and analogical reasoning, pp. 146–178. Cambridge University Press, New York (1989)

    Google Scholar 

  51. Soares, C., Brazdil, P.B.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54, 195–209 (2004)

    Article  MATH  Google Scholar 

  52. Stahl, A.: Learning feature weights from case order feedback. In: Aha, David, W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 502–516. Springer, Heidelberg (2001). doi:10.1007/3-540-44593-5_35

    Chapter  Google Scholar 

  53. Vuori, V., Laaksonen, I., Oja, E., Kangas, J.: Experiments with adaptation strategies for a prototype-based recognition system for isolated handwritten characters. Int. J. Doc. Anal. Recogn. 3(3), 150–159 (2001)

    Article  Google Scholar 

  54. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Information Science and Statistics. Springer, Series (2005)

    MATH  Google Scholar 

  55. Weihs, C., Ligges, U., Mörchen, F., Müllensiefen, M.: Classification in music research. J. Adv. Data Anal. Classif. 3(1), 255–291 (2007). Springer

    Article  MathSciNet  MATH  Google Scholar 

  56. Wess, S., Globig, C.: Case-based and symbolic classification. In: Wess, S., Althoff, K.-D., Richter, M.M. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 77–91. Springer, Heidelberg (1994). doi:10.1007/3-540-58330-0_78

    Chapter  Google Scholar 

  57. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11, 273–314 (1997)

    Article  Google Scholar 

  58. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6, 1–34 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Wunsch, G.: Systemtheorie der Informationstechnik. Akademische Verlagsgesellschaft, Leipzig (1971)

    Google Scholar 

  60. Xiong, N., Funk, P.: Building similarity metrics reflecting utility in case-based reasoning. J. Intell. Fuzzy Syst. 17(4), 407–416 (2006). IOS Press

    MATH  Google Scholar 

  61. Xueyan, S., Petrovic, S., Sundar S.: A case-based reasoning approach to dose planning in radiotherapy. In: Wilson, D.C., Khemani, D. (eds.) The seventh international Proceedings of Conference on Case-Based Reasoning, Belfast, Northern Ireland, pp. 348–357 (2007)

    Google Scholar 

  62. Zhang, L., Coenen, F., Leng, P.: Formalising optimal feature weight settings in case-based diagnosis as linear programming problems. Knowl.-Based Syst. 15, 298–391 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Perner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Perner, P. (2017). Model Development and Incremental Learning Based on Case-Based Reasoning for Signal and Image Analysis. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2016. Lecture Notes in Computer Science(), vol 10149. Springer, Cham. https://doi.org/10.1007/978-3-319-54609-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54609-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54608-7

  • Online ISBN: 978-3-319-54609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics