Skip to main content

Kernel Discriminant Analysis for Information Extraction in the Presence of Masking

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10146))

Abstract

To reduce the memory and timing complexity of the Side-Channel Attacks (SCA), dimensionality reduction techniques are usually applied to the measurements. They aim to detect the so-called Points of Interest (PoIs), which are time samples which (jointly) depend on some sensitive information (e.g. secret key sub-parts), and exploit them to extract information. The extraction is done through the use of functions which combine the measurement time samples. Examples of combining functions are the linear combinations provided by the Principal Component Analysis or the Linear Discriminant Analysis. When a masking countermeasure is properly implemented to thwart SCAs, the selection of PoIs is known to be a hard task: almost all existing methods have a combinatorial complexity explosion, since they require an exhaustive search among all possible d-tuples of points. In this paper we propose an efficient method for informative feature extraction in presence of masking countermeasure. This method, called Kernel Discriminant Analysis, consists in completing the Linear Discriminant Analysis with a so-called kernel trick, in order to efficiently perform it over the set of all possible d-tuples of points without growing in complexity with d. We identify and analyse the issues related to the application of such a method. Afterwards, its performances are compared to those of the Projection Pursuit (PP) tool for PoI selection up to a 4th-order context. Experiments show that the Kernel Discriminant Analysis remains effective and efficient for high-order attacks, leading to a valuable alternative to the PP in constrained contexts where the increase of the order d does not imply a growth of the profiling datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Even if the complexity is independent of d, the amount of information extracted is still decreasing exponentially with d, as expected when \((d-1)\)-th order masking is applied [9].

  2. 2.

    It has been shown to be optimal as preprocessing for a template attack under specific leakage models [4].

  3. 3.

    Whence the name dth-order attacks.

  4. 4.

    Not necessary distinct.

  5. 5.

    Other polynomial kernel functions may be more adapted if the acquisitions are not free from \(d^\prime \)th-order leakages, with \(d^\prime <d\). Among non-polynomial kernel functions, we effectuated some experimental trials with the most common Radial Basis Function (RBF), obtaining no interesting results. This might be caused by the infinite-dimensional size of the underlying feature space, that makes the discriminant components estimation less efficient.

  6. 6.

    This choice has been done to allow for reproducibility of the experiments.

  7. 7.

    For PCA and LDA methods, it is known that a good component selection is fundamental to obtain an efficient subspace [6], and that the first components not always represent the best choice. This is likely to be the case for the KDA as well, but in our experiments the choice of the two first components \(\varepsilon ^{\mathrm {KDA}}_1, \varepsilon ^{\mathrm {KDA}}_2\) turns out to be satisfying, and therefore to simplify our study we preferred to not investigate other choices.

  8. 8.

    A different approach is analysed in Sect. 4.5.

  9. 9.

    We think that is result is quite data-dependant, so the use of such an approach is not discouraged in general.

  10. 10.

    At the cost of adjust some parameters in a way that might affect the accuracy of the method, see [13] for a discussion.

  11. 11.

    A further validation is performed over such windows, using other two training sets to estimate \(\hat{\rho }\), in order to reduce the risk of false positives.

  12. 12.

    Interestingly, the threshold \(T_{det}\) depends on size of \(\mathcal {Z}\) and not on the size of the training sets of traces. This fact disables the classic strategy that consists in enlarging the sample, making \(T_{det}\) lower, in order to raise the statistical power of the test (i.e. \(\mathrm {Prob}[\hat{\rho }>T_{det}\vert \rho =1]\)). Some developments of this algorithm have been proposed [12], also including the substitution of the MMPC objective function with a Moments against Samples one, that would let \(T_{det}\) decrease when increasing the size of the training set.

  13. 13.

    It can be observed that the regions selected by \(\varepsilon ^{PP}\) correspond to those for which the \(\varepsilon ^{KDA}\) exhibits the highest magnitude implicit coefficients (Fig. 3, upper-triangular part on the right).

References

  1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). doi:10.1007/11894063_1

    Chapter  Google Scholar 

  2. Bär, M., Drexler, H., Pulkus, J.: Improved template attacks. In: COSADE 2010 (2010)

    Google Scholar 

  3. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA: first results of using principal component analysis for extensive power analysis. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6_24

    Chapter  Google Scholar 

  4. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more: dimensionality reduction from a theoretical perspective. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 22–41. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_2

    Chapter  Google Scholar 

  5. Bruneau, N., Danger, J.-L., Guilley, S., Heuser, A., Teglia, Y.: Boosting higher-order correlation attacks by dimensionality reduction. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 183–200. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12060-7_13

    Google Scholar 

  6. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for side-channel attacks. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 15–33. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31271-2_2

    Chapter  Google Scholar 

  7. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H., Prouff, E.: Achieving side-channel high-order correlation immunity with leakage squeezing. J. Cryptographic Eng. 4(2), 107–121 (2014)

    Article  Google Scholar 

  8. Centeno, T.P., Lawrence, N.D.: Optimising kernel parameters and regularisation coefficients for non-linear discriminant analysis. J. Mach. Learn. Res. 7, 455–491 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_26

    Google Scholar 

  10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  11. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). doi:10.1007/978-3-319-08302-5_17

    Google Scholar 

  12. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection of points of interests in leakage traces. IACR Cryptology ePrint Archive, p. 536 (2015)

    Google Scholar 

  13. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.: Efficient selection of time samples for higher-order DPA with projection pursuits. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 34–50. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4_3

    Chapter  Google Scholar 

  14. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassembler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Trans. on Comput. Sci. X. LNCS, vol. 6340, pp. 78–99. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17499-5_4

    Chapter  Google Scholar 

  15. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). doi:10.1007/11894063_2

    Chapter  Google Scholar 

  16. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36, 1171–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptographic Eng. 1(4), 293–302 (2011)

    Article  Google Scholar 

  18. Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 14–27. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_2

    Chapter  Google Scholar 

  19. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  20. Li, T., Zhu, S., Ogihara, M.: Using discriminant analysis for multi-class classification: an experimental investigation. Knowl. Inf. Syst. 10(4), 453–472 (2006)

    Article  Google Scholar 

  21. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the success rate of higher-order side-channel attacks. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 35–54. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3_3

    Google Scholar 

  22. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 243–260. Springer, Cham (2014). doi:10.1007/978-3-319-10175-0_17

    Google Scholar 

  23. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

  24. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 155–174. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_10

    Chapter  Google Scholar 

  25. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4_25

    Chapter  Google Scholar 

  26. Schölkopf, B., Müller, K.-R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX, vol. 1, p. 1 (1999)

    Google Scholar 

  27. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  28. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Cagli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cagli, E., Dumas, C., Prouff, E. (2017). Kernel Discriminant Analysis for Information Extraction in the Presence of Masking. In: Lemke-Rust, K., Tunstall, M. (eds) Smart Card Research and Advanced Applications. CARDIS 2016. Lecture Notes in Computer Science(), vol 10146. Springer, Cham. https://doi.org/10.1007/978-3-319-54669-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54669-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54668-1

  • Online ISBN: 978-3-319-54669-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics