Skip to main content

SpecTre: A Tiny Side-Channel Resistant Speck Core for FPGAs

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10146))

Abstract

Emerging applications such as the Internet of Things require security solutions that are small, low power and low cost, yet provide solid protection against a wide range of sophisticated attacks. Lightweight cryptographic schemes such as the Speck cipher that was recently proposed by the NSA aim to solve some of these challenges. However, before using Speck in any practical application, sound protection against side-channel attacks must be in place. In this work, we propose a bit-serialized implementation of Speck, to achieve minimal area footprint. We further propose a Speck core that is provably secure against first-order side-channel attacks using a Threshold Implementation technique which depends on secure multi-party computation. The resulting design is a tiny crypto core that provides AES-like security in under 40 slices on a low-cost Xilinx Spartan 3 FPGA. The first-order side-channel resistant version of the same core needs less than 100 slices. Further, we validate the security of the protected core by state-of-the-art side-channel leakage detection tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: break area records of block ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)

    Article  Google Scholar 

  2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck families of lightweight block ciphers. IACR Cryptology ePrint Archive 2013, 404 (2013)

    Google Scholar 

  3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck block ciphers on AVR 8-bit microcontrollers. In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 3–20. Springer, Cham (2015). doi:10.1007/978-3-319-16363-5_1

    Google Scholar 

  4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Simon and Speck: block ciphers for the internet of things. In: NIST Lightweight Cryptography Workshop, vol. 2015 (2015)

    Google Scholar 

  5. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Efficient and first-order DPA resistant implementations of Keccak. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham (2014). doi:10.1007/978-3-319-08302-5_13

    Google Scholar 

  6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014). doi:10.1007/978-3-319-06734-6_17

    Chapter  Google Scholar 

  7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_18

    Google Scholar 

  8. Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the AES algorithm. In: 2012 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 623–626. IEEE (2012)

    Google Scholar 

  9. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)

    Google Scholar 

  10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_20

    Chapter  Google Scholar 

  11. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of lightweight-cryptography implementations. IEEE Des. Test Comput. 6, 522–533 (2007)

    Article  Google Scholar 

  12. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)

    Google Scholar 

  13. Hwang, D., Chaney, M., Karanam, S., Ton, N., Gaj, K.: Comparison of FPGA-targeted hardware implementations of eSTREAM stream cipher candidates. In: The State of the Art of Stream Ciphers, pp. 151–162 (2008)

    Google Scholar 

  14. Kaps, J.-P.: Chai-Tea, cryptographic hardware implementations of xTEA. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 363–375. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5_28

    Chapter  Google Scholar 

  15. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. J. Cryptographic Eng. 1(1), 5–27 (2011)

    Article  Google Scholar 

  16. Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-level masking under a path-based leakage metric. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 580–597. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3_32

    Google Scholar 

  17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smartcards. Springer, New York (2007)

    MATH  Google Scholar 

  18. Moradi, A., Mischke, O.: How far should theory be from practice? – Evaluation of a countermeasure. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 92–106. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_6

    Chapter  Google Scholar 

  19. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_6

    Chapter  Google Scholar 

  20. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308_38

    Chapter  Google Scholar 

  21. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_37

    Chapter  Google Scholar 

  22. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devices – security for 1000 gate equivalents. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85893-5_7

    Chapter  Google Scholar 

  23. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking – towards first- and second-order resistance in hardware. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28166-7_27

    Chapter  Google Scholar 

  24. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent Simon: a threshold implementation under 100 slices. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 1–6. IEEE (2015)

    Google Scholar 

  25. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the families of SIMON and SPECK ciphers. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 40–48, September 2014

    Google Scholar 

  26. Yalla, P., Kaps, J.-P.: Lightweight cryptography for FPGAs. In: International Conference on Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 225–230. IEEE (2009)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under grants CNS-1314770 and CNS-1261399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, C., İnci, M.S., Taha, M., Eisenbarth, T. (2017). SpecTre: A Tiny Side-Channel Resistant Speck Core for FPGAs. In: Lemke-Rust, K., Tunstall, M. (eds) Smart Card Research and Advanced Applications. CARDIS 2016. Lecture Notes in Computer Science(), vol 10146. Springer, Cham. https://doi.org/10.1007/978-3-319-54669-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54669-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54668-1

  • Online ISBN: 978-3-319-54669-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics