Skip to main content

Provably Secure Fair Mutual Private Set Intersection Cardinality Utilizing Bloom Filter

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Abstract

The availability of electronic information is necessary in our everyday life. Progressively, often, data needs to be shared among the unreliable entities. In this field, one interesting and common problem occurs when two parties want to secretly determine the intersection or cardinality of intersection of their respective private sets. PSI or its variants are ideal to solve the aforementioned problems. Existing solutions of \(\mathsf{mPSI}\) and \(\mathsf{mPSI}\)-CA mainly use trusted third party to achieve fairness. However, in real life, the unconditional trust is fraught with security risks as the trusted third party may be unfaithful or corrupted. As a consequence, construction of an efficient \(\mathsf{mPSI}\)-CA preserving fairness remains a challenging problem. In this paper, we address this issue by employing an off-line third party, called arbiter, who is assumed to be semi-trusted in the sense that he does not have access to the private information of the entities while he will follow the protocol honestly. In this work, we design a construction of fair and efficient \(\mathsf{mPSI}\)-CA utilizing Bloom filter. Our \(\mathsf{mPSI}\)-CA is proven to be secure in the random oracle model (ROM) and achieves linear communication and computation overheads. A concrete security analysis is provided in malicious environments under the Decisional Diffie-Hellman (DDH) assumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 86–97. ACM (2003)

    Google Scholar 

  2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4_28

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)

    Google Scholar 

  4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  5. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851

    Chapter  Google Scholar 

  6. Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg (2006). doi:10.1007/11734727_5

    Chapter  Google Scholar 

  7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  8. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). doi:10.1007/BFb0052252

    Chapter  Google Scholar 

  9. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Citeseer (1997)

    Google Scholar 

  10. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4_7

    Chapter  Google Scholar 

  11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

    Chapter  Google Scholar 

  12. Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35404-5_17

    Chapter  Google Scholar 

  13. Debnath, S.K., Dutta, R.: A fair and efficient mutual private set intersection protocol from a two-way oblivious pseudorandom function. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 343–359. Springer, Cham (2015). doi:10.1007/978-3-319-15943-0_21

    Google Scholar 

  14. Debnath, S.K., Dutta, R.: Efficient private set intersection cardinality in the presence of malicious adversaries. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 326–339. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4_18

    Google Scholar 

  15. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015). doi:10.1007/978-3-319-23318-5_12

    Chapter  Google Scholar 

  16. Debnath, S.K., Dutta, R.: Fair mPSI and mPSI-CA: Efficient constructions in prime order groups with security in the standard model against malicious adversary. IACR Cryptology ePrint Archive (2016)

    Google Scholar 

  17. Debnath, S.K., Dutta, R.: Towards fair mutual private set intersection with linear complexity. Secur. Commun. Netw. 9(11), 1589–1612 (2016)

    Article  Google Scholar 

  18. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 128–144. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6_9

    Chapter  Google Scholar 

  19. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 789–800. ACM (2013)

    Google Scholar 

  20. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with simulation-based security. J. Cryptology 29(1), 115–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88(1), 172–188 (2005)

    Article  Google Scholar 

  22. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic prfs. IACR Cryptology ePrint Archive 2015, 4 (2015)

    Google Scholar 

  23. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols. In: Network and Distributed System Security Symposium (NDSS), The Internet Society (2012)

    Google Scholar 

  24. Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear complexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7_18

    Chapter  Google Scholar 

  25. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15

    Chapter  Google Scholar 

  26. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 515–530 (2015)

    Google Scholar 

  27. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX Security, vol. 14, pp. 797–812 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Debnath, S.K., Dutta, R. (2017). Provably Secure Fair Mutual Private Set Intersection Cardinality Utilizing Bloom Filter. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics