Transposition of AES Key Schedule

Jialin Huang, Xuejia Lai

Department of Computer Science and Engineering
Shanghai Jiaotong University, China

Abstract. In this paper, we point out a new weakness of the AES
key schedule by revisiting an old observation exploited by many known
attacks. We also discover a major cause for this weakness is that the
column-by-column word-wise property in the key schedule matches nice-
ly with the MixColumns operation in the cipher’s diffusion layer. Then
we propose a new key schedule by minor modification to increase the
security level for AES. First, it reduces the number of rounds that some
attacks are effective, such as SQUARE attacks and meet-in-the-middle
attacks; Second, it is interesting that our new key schedule also protect-
s AES from the most devastating related-key differential type attacks,
which work against AES-192 and AES-256 with the full number of round-
s. Compared with the original key schedule, ours just does a transposi-
tion on the output matrix of the subkeys. Compared with other proposed
modifications of AES key schedule, our modification adds no non-linear
operations, no need to complicate the diffusion method, or complicate
the iteration process of generating subkeys. Finally, our results suggest
that the route of diffusion propagation should get more attention in the
design of key schedules.

Key words: AES, key schedule, meet-in-the-middle, related-key, Mix-
Columns

1 Introduction

In 2000, Rijndael was chosen by NIST as the Advanced Encryption Standard
(AES), as a replacement of DES for the US government. This new standard
encryption algorithm has become one of the most widely used block ciphers
in the last decade. There has been a lot of cryptanalysis against it, such as
square attack, differential attack, impossible differential attack, differential-linear
attack, and meet-in-the-middle attack. A considerable number of these attacks
exploit the weaknesses of the AES key schedule. On the one hand, almost all the
differential-type attacks can be put in a related-key model for a lower time and
data complexity than in a single-key model. On the other hand, the weakness
in the key schedule can be exploited in the SQUARE and meet-in-the-middle
attacks. This assists the attacker to gain free bytes of subkeys for extending the
targeted rounds of an attack. Since most current attacks focus on maximizing
the number of rounds that can be broken and on minimizing the time and data
complexity, these security vulnerabilities caused by key schedules are worthy of

2 Transposition of AES Key Schedule

more study. There are many modified variants of AES, especially modifications of
the key schedule, which aim to patch the security flaw. In 2002, May et al. studied
the defects of the AES key schedule which help the published attacks. By taking
two statistical tests-frequency test and SAC test they found that the original
AES key schedule has a problem of bit leakage and does not satisfy a one-way
function property. Then the author gave a new design of key schedule, exploiting
a three-round AES cipher function, which has good bit diffusion and confusion,
to derive the subkeys. In 2010, Nikolic presented a tweak for the key schedule
of AES, which is called xAES. The author added several rotation operations
and extra S-boxes, which would not change the overall structure of the original
key schedule. After checking by an automatic search tool developed by [1], the
author showed that xAES can defend against related-key differential attacks. In
2011, Choy et al. proved that there are a number of equivalent key pairs in May
et al.’s key schedule, which should be avoided in a block cipher design. Then
they improved this key schedule by eliminating these weak keys. Moreover, they
emphasized that the improved key schedule can defend against the related-key
differential attack in [2] and the related-key boomerang attack in [3]. All of
these modifications to the AES key schedule introduce extra operations leading
to a reduction of execution speed and making the new key schedule totally
inconsistent with the old one.

QOur contribution

In this paper, we propose a new key schedule which is almost the same as the
original AES key schedule, that is, we will not bring any additional operations
into the old one—no increase in any non-linear operations (i.e. S-boxes), no com-
plicating the diffusion course (e.g. adding rotation operations or XOR involving
more bits, and so on). All we have done is just transpose the output matrix of
the subkeys which are about to enter the encryption round’s AddRoundKey op-
eration. Actually, we only exchange the matrix subscripts of rows and columns.
Our change is very simple and just affects the position of the diffusion pattern,
instead of altering the branching of the key schedule. This feature makes our
key schedule significantly faster than other variants of AES key schedule. We
switch the interaction from between different columns to between different rows.
The reason for this modification is due to a new weakness: it is the specific way
that diffusion is done that makes the AES key schedule much weaker. Since this
new AES key schedule still keeps its two fatal weaknesses—slow diffusion and
high linearity—it is interesting that this minor change can bring much higher
security. Moreover, most of the recent modifications to the AES key schedule
only stress resisting related-key attacks, while our modification can impact both
related-key attacks and single-key attacks.

Organization

This paper is organized as follows: in Section 2, we describe the AES block
cipher, especially its key schedule. Then we introduce several major pieces of
analysis as well as modifications proposed in previous work. In Section 3, we
describe our new key schedule. In Section 4, we focus on two kinds of attacks

Transposition of AES Key Schedule 3

using weaknesses of the AES key schedule, and explain how the change we make
can avoid these attacks. In Section 5 we summarize our results.

2 Preliminaries

In this section, we give a brief description of the FOX block cipher, then the
formal definition of the pseudorandom and strong pseudorandom permutations
are reviewed.

3 Description and Security Analysis of the AES Key
Schedule

3.1 A Short Description of AES

The block cipher AES has a 128-bit state and supports three key sizes: 128,
192, and 256 bits. It is a byte-oriented cipher, and has 10 rounds for 128-bit,
12 rounds for 192-bit and 14 rounds for 256-bit keys. In each round of AES,
the internal state can be seen as a 4 x 4 matrix of bytes, which undergo the
following basic transformations: 1. SubBytes: byte-wise application of S-boxes,
abbreviated as SB(-). 2. ShiftRows: cyclic shift of each row of the state matrix
by some amount, abbreviated as SR(:). 3. MixColumns: column-wise matrix
multiplication, abbreviated as MC(-). 4. AddRoundKey: XOR of the subkey to
the state, abbreviated as ARK(-).
An additional AddRoundKey operation is performed before the first round
(the whitening key) and the MixColumns operation is omitted in the last round.
The key schedule is required to produce 11, 13 or 15 128-bit subkeys from
master keys of size 128, 192 or 256 bits respectively. Each 128-bit subkey contains
four words (a word is a 32-bit quantity which is denoted by W[]). Call the
number of rounds N,., and the number of 32-bit words in the master key Ni/(e.g.,
for AES-128, N, = 10,Ny = 4):
For i =0,..., Ny —1: W[i] = K[i], where K[] is the master key.
For i = Nj, ..., 4(N, +1) — 1.
1.temp «— Wi —1].
2.If i mod Nj, == 0: temp +— SB(RotWord(temp)) ®RCON|i\Ni].
3.If N, = 8 and i mod 8 == 4: temp <— SB(temp).
4.WI[i] «— Wi — Ni]® temp.
where RCON]] are round constants, and RotWord(-) rotates four bytes by one
byte position to the left. The subkey used in the AddRoundKey at the end of
round r is denoted by K”. The whitening key is K. Each subkey is represented as
a byte matrix of size 4x4 (corresponding to the state matrix), and the j’th byte in
the i’th row of the matrix is denoted by K7 ;(0 <1, j < 4). The "equivalent” key
obtained when the MixColumns and AddRoundKey operations are interchanged
is denoted by K = MC~1(K™).

4 Transposition of AES Key Schedule

3.2 Previous Analysis of the AES Key Schedule

In [4], two properties of the AES key schedule were discussed: partial key guessing
and key splitting. Partial key guessing describes the situation where knowledge
of a part of the subkey allows the attacker to calculate many other subkey(or
even master key) bits. According to the author’s order of key guessing, the result
is as follows: learning of 28 bytes of key at the cost of having guessed seven bytes;
learning of 88 bytes of key at the cost of guessing 15 bytes; learning of 148 bytes
by guessing 23 bytes; learning of 208 bytes by guessing 31 bytes. Key splitting
describes the following phenomenon: the two topmost rows interact with the
two bottommost rows through only 14 bytes (for AES-256) and if we guess these
14 bytes, the rest of the key has been split into two independent halves each
controlling half of the expanded key bytes. This implies some kind of meet-in-
the-middle attack but no attack is known that uses this property.

In [5], the author proposed three desired properties for a key schedule: 1. be
a collision-resistant one-way function (irreversible function); 2. has minimal mu-
tual information between all subkey bits and master key bits; 3. has an efficient
implementation. The author measured property 1 with Shannon’s concepts of
bit confusion and bit diffusion. Property 2 between subkeys can be avoided by
the achievement of property 1, and the author assumed that a designer would
not use master key bits directly in subkeys, such as IDEA and DES. Then the
author used two statistical tests of CryptX to measure the original key schedule
of AES. One is the frequency test, which is performed to judge the bit confusion
property. The other is the Strict Avalanche Criterion (SAC) test for measuring
the bit diffusion property. According to the results, the author pointed out that
the majority of subkeys do not attain complete bit confusion, and none of these
subkeys pass the SAC test. This poor performance suggests that the AES key
schedule suffers a serious bit leakage problem and is not a one-way function.

In [6], the linear relationships between subkey values have been described.
The author studied the propagation of (known) key differences in the key sched-
ule for all three key sizes of AES. In principle these relationships can be useful
for related-key attacks against AES. However, the author pointed out that for
any of the defined key sizes, no such relationship exists which covers the entire
key-schedule (i.e., which involves values from the first subkey and values from
the last subkey, but no values from subkeys in between), so there is no straight-
forward way to exploit the findings to mount a related-key attack against the
full AES.

In [2], two features of the AES key schedule are analyzed. The slow diffusion
feature has already been discussed widely in a related-key model cryptanalysis.
Another feature is that the shift operation in the internal state is preserved by
the key schedule. These two features result in the existence of local collisions,
which are important for finding a related-key differential type attack that works
against the cipher with the full number of rounds.

Transposition of AES Key Schedule 5

3.3 Previous Modifications to the AES Key Schedule

Increasing the number of rounds is a straightforward and effective way to avoid
many kinds of attacks. The current key schedule of AES can easily produce a few
more subkeys without any substantial change. This enhances the security of AES
to a large extent, and is also what the designer has done for different versions
of AES [7]. However, this method affects the speed of not only the key schedule
but also the actual cipher, reducing the execution speed by a factor that cannot
be ignored. So most of the designers seek to modify the key schedule itself. [5]
gave a new AES key schedule proposal. Each subkey is a 128-bit output after the
execution of three rounds of the cipher function, using the XOR of master key
and different round constants as both the data input and the key input. The only
difference among the three versions of the key schedule (128,192, and 256-bit) is
the initialization of the data input and the key input. The author aimed to apply
the elegant and succinct AES round function to the key schedule, and he also
used two basic statistical tests-the frequency test and the SAC test-to measure
bit confusion and bit diffusion in the key schedule. He concluded that the new
AES key schedule has much better performance than the old one. However, this
new key schedule has a relatively large change compared to the original one,
and also has a strong efficiency drawback due to the high number of S-boxes,
especially in the hash mode. Moreover, [8] proved that there are 227! equivalent
key pairs in [5)’s key schedule, which produce the same encryption output and
could be taken as an attack point. [8] also designed two new AES variants to
protect against the related-key attacks of [3] and [2]. One is a revision of [5]’s
key schedule that eliminates the equivalent key pairs. The author simplified the
initialization of the data input and the key input so that each byte of them only
depends on one instead of two bytes of the master key. This prevents an adversary
from forcing the inputs to have zero differentials by choosing an appropriate pair
of related master keys. Another is a new on-the-fly key schedule required in the
hardware implementation. Both of the key schedules mentioned in [5] and [8]
have the property of round key irreversibility, which may make an attack more
difficult to a certain extent. However, the irreversibility is likely to result in a lot
of equivalent keys, which need to be avoided by the designer. Moreover, these key
schedules increase the security by making the AES key schedule more nonlinear
and this reduces the efficiency greatly. [9] presented a tweak for the key schedule
of AES by adding a certain number of rotation operations, as well as additional
S-boxes in the key schedule of AES-192. And this new variant is called xAES.
A subkey word is rotated by one byte before participating in the generation of
the next subkey word. The other operations are the same as the old AES key
schedule. Then after exploiting an automatic search tool to find the related-key
differential characteristics, the author claimed that the number of active S-boxes
in the best round-reduced related-key differential characteristics has increased,
so xAES is resistant against related-key differential attacks. However, this tweak
cannot protect AES from other kinds of attacks, such as recent meet-in-the-
middle attacks [11] [13], and also suffers a reduced efficiency. The key schedules
in [9] and [8] defend mainly against the recent related-key differential type

6 Transposition of AES Key Schedule

Interna]l state Original subkey New subkey

500 [s01 [s02] s03 /&ody| ko1 [k02 | k03 0] k10 | k20 [k
s10] s11 [s12] s13 k10| ki1 [Kk12] k13 k01 | kit [k21 | k81
520 | s21 | s22] 523 k20] k21 [k22 | k23 k02 | k12 | k22 | k32
530 | s31 | s32] 33 \e39/| k31 [k32 | k33 k03 | k13 | k23 | k33

Fig. 1. Transposition on subkey matrix

attacks. Hashing the master key before passing it through the AES key schedule
can also achieve this purpose, since it is hard for an adversary to control the key
differences at the beginning [14].

4 The New Weakness and a New AES Key Schedule
Proposal

The weaknesses of AES key schedule in the previous work can be classified as
follows: subkey bit leakage, slow diffusion and high linearity. The subkey leakage
property only focuses on the amount of information leaked. But in this paper,
we show that the position of the leaked subkey material is also an important
flaw for AES. That is, even though we cannot change the number of subkey
bytes leaked, rearranging which bytes are leaked brings a different security level
for AES. The major reason is the column-by-column word-wise property in the
original key schedule, which matches nicely with the MixColumns operation in
the cipher’s diffusion layer. With this match, the leaked subkeys provide as much
useful information as possible for an attack.

We propose a new key schedule having only a minor modification to the
old one but more resistant to SQUARE attack, meet-in-the-middle attack and
related-key differential attack. The AES key schedule uses word-wise operations,
instead of byte-wise operations just as in the cipher round function. The word
type helps an attacker to get some free bytes needed to guess, leading to an
extension of the number of targeted rounds. Moreover, the independence between
different rows allows the attacker to construct required key differentials more
easily in a related-key differential scenario exploiting a local collisions technique,
which makes a major contribution to covering the full number of rounds in
AES-192 and AES-256 attacks. Starting from the point of changing word type,
we reconsider the AES key schedule from a very simple aspect, that is, after
the execution of the original key schedule, we transpose the output matrix of
each subkey. According to the notation of 2.1, we rearrange the position of the
subkey bytes, by taking the k7 ; as subkeys, instead of k7 ;, just as Fig. 1. After
this transposition, the route of subkey generation is changed and the weakness
is removed.

For the convenience of illustrating, hereafter we denote AES with our new
key schedule as transposition-AES.

Transposition of AES Key Schedule 7

5 Security Comparison of AES and transposition-AES

In this section we first review AES analysis papers, with the emphasis on relating
attack scenarios to the AES key schedule weakness mentioned in Section 3. Then
we show specifics of how transposition-AES can effectively resist these two types
of attacks.

5.1 SQUARE Attack and Meet-in-the-Middle Attack

First we describe a well-known observation on the AES-192 key schedule. This
observation is based on the truth that when two of the three words W[i-1], Wi,
W/[i-N] are known, the remaining one can be derived.

Observation 1. By the key schedule of AES-192, knowledge of columns 0, 1,
2, 3 of the subkey K11 allows an attacker to deduce two columns of the subkey
K, and one column of the subkey K;_;.

This observation is widely used for the extension of attacks for AES-192,
which originates from [10]. In [10], a generic 7-round SQUARE attack extended
from a 6-round SQUARE attack was proposed, with complexity of 22°®. This
running time should not have been suitable for AES-192. But by using Observa-
tion 1, the author gains three useful key bytes for free, so the attack needs 2'84
time, which is lower than exhaustive search of AES-192. At the end of [10], the
author claimed that ” This f does not indicate the necessity to modify the Rijn-
dael key schedule” and ” If we concentrate on counting the number of rounds for
which shortcut attacks exist, the cryptanalytic gain of this paper is one round for
RD-192, not more”. However, with the development of cryptanalysis technique,
the original attacks are always being improved. As the complexity is reduced
and the targeted number of rounds becomes larger, this extension in the last
rounds is likely to become more and more dangerous. In [4], an improved 6-
round SQUARE attack is mentioned, whose overall complexity is comparable to
272 encryptions. Then an extension to 7 rounds is carried out, adding 128-bit of
key guessing in the last round. This leads to a total workload of 22°°. According
to observation 1, guessing the last round key K7 gives us two of the four bytes
from FG, plus one byte from K’. This also saves us three bytes of key guess-
ing. [4] also gives two improvements to generate a 7-round attack, which make
an extension to 8 rounds possible. This 8-round attack has a complexity of 2204,
Again, fixing K® determines two useful key bytes of F7, which gives a 2'88 com-
plexity. In [12], the author presents a new variant of the SQUARE-type attack
mentioned in [11]. Then the author shows that for AES-192, the time complex-
ity of the 8-round attack can be reduced by a factor of 232 using key schedule
weaknesses. A factor of 224 in this reduction is achieved by applying Observation
1. Later, [13] gives an 8-round meet-in-the-middle attack on AES-192, which
has a dramatically smaller data complexity - 24! chosen plaintexts. In this paper
Observation 1 again contributes to a reduction of the time complexity.

Security analysis of the key schedule after transposition

Most of above attacks use the key schedule to extend the last three rounds.
Considering the situation of the least bytes of keys involved in these three rounds,

8 Transposition of AES Key Schedule

we need to guess all bytes of the last round’s subkey, marked as round r. Since
the last round does not have the MixColumns operation, all bytes of the subkey
in round r-1 are involved in the AddRoundKey operation. And then according to
the diffusion of cipher rounds, there are at least four bytes of r-2 round subkey
needed to guess(since we only consider one byte of the internal value at the
beginning of r-2 round). See Fig. 2 and Fig. 3: the gray boxes are the involved
key bytes; the ” A” mark the key bytes having been guessed; the ”B” mark the
leaked key bytes, which can derive from ”A”; the ”?7” mark the unknown key
bytes.

=
sl
=
=

e [o e
o

B|B [? |? B|B |[B |B
B|B |7 |? B|B |B |B
B|B [? |7 7?0?77
B|B [? |? ?{?]?|?
A A A A |A

.
T
e
.
.

.
T
e
.
.

= e | e |
el =l e
= | e e |

A A AlA |A
Fig. 2. Original key schedule Fig. 3. Our key schedule

However, it is not necessary and not practical to guess all gray bytes. In this
situation, when there are four bytes in the same column and these four bytes
are obtained by MixColumns from one byte (This occurs in round r-1 and round
r-2), we could exchange the operation of AddRoundKey and MixColumns. By
doing this we only need to guess the corresponding one byte of FJ—, instead of
guessing four bytes of K;(K; = MC~!(K;), where Kj is the j’th column in
subkey K). It is by this that we can avoid searching too many bytes of subkeys

Transposition of AES Key Schedule 9

in a targeted round, which is also what the previous analysis papers have done.
This is due to a property of the cipher round function and has nothing to do
with the key schedule.

An attacker can further reduce the number of guessed bytes mentioned above
by Observation 1. Owing to the word-wise property of the AES key schedule,
there are several words’ information being leaked when the attacker has guessed
the last four words. When this type of word-wise is by column, just as the
original AES key schedule, the inversion of the MixColumns operation on the
leaked word can be done easily. That is, the leakage makes all four bytes in some
K are known, so the complexity for guessing the needed one byte in fj is left
out. See Fig. 2.

After transposing the output subkey, Observation 1 turns out to be ”By the
key schedule of AES-192, knowledge of rows 0, 1, 2, 3 of the subkey K., allows
an attacker to deduce two rows of the subkey K;, and one row of the subkey
K;_17. The leaked words are by rows now, just as Fig. 3. Obviously it is not
sufficient for any one column to compute K ; = MC~!(K;) unless the remaining
two(or three) unknown bytes in K; are also guessed, which leads to a heavier
workload than guessing just one byte of K; directly. So in this situation the
attacker cannot gain any free bytes through the weakness of the key schedule.
It is the column-oriented property of the MixColumns operation that makes the
original AES key schedule which is also word-wise by column more vulnerable
to the attacks, and the transposition eliminates this vulnerability.

A similar analysis also applies to AES-256.

5.2 Related-key Differential Attack

The related-key differential technique has always been a useful cryptanalysis
tool for AES, especially its variants-related-key boomerang and rectangle at-
tacks. But none of these attacks could break any version of full round AES,
until in [2] and [3]. In [2], the author identified slow diffusion and certain d-
ifferential trails in the key schedule of AES-256 which match nicely with the
differential properties of the cipher round function. Then he constructed local
collisions based on this discovery. The concept of local collisions comes from the
cryptanalysis of hash functions. The method is to inject a difference into the
internal state from the key schedule, causing a disturbance, and then to correct
it with the next injections, which also come from the key schedule. An one-round
example of local collision in AES-256 is shown in Fig. 4 [3]. In this related-key
scenario the attacker can control the difference in the key at the beginning, and
due to the key schedule the resulting difference pattern spreads to other subkeys.
The more disturbances there are, the more complexity the attack needs, since
the disturbances bring about active S-boxes in the internal state and in the key
schedule. The disturbance differences and the correction differences compensat-
ing each other in the key schedule can be viewed as a set of local collisions. [2]
starts from a two-round difference propagation using the idea of local collisions,
which brings deterministic differences in the subkeys and no difference in the
internal state. The author then concatenates four such two-round patterns and

10 Transposition of AES Key Schedule

[Key schedule round]

SubBytes

ShiftRows
MixColumns

correction I
I A

[Key schedule round]

Fig. 4. One round local collision

an additional 6-round trail on the top to reach a full attack for AES-256. The
trail has 36 active S-boxes in the block and 5 in the key schedule in total. Based
on a small modification to this trail, the author develops the first related-key
attack for AES-256 for one out of 23 key pairs, with 213! time complexity and
265 memory. In [3], the author improves the result. By a combination of local
collisions and the related-key boomerang technique, this attack covers the full
AES-256 with 299°° time and data complexity for all the keys, instead of a weak
key class in [2]. Moreover, with the help of local collisions, the author shows a
first related-key amplified-boomerang attack for full AES-192, whose key sched-
ule has better diffusion which leads to more active S-boxes in subkeys. The
overall time complexity of this attack is about 2!76, and the data complexity is
9123

Security analysis of the key schedule after transposition

The resistance to related-key differential type attacks is usually measured by
the number of active S-boxes in the differential characteristics. In a related-key
scenario we need to consider the number of S-boxes both in the internal state
and in the key schedule. The former is just the number of non-zero bytes in
the disturbances; the latter is determined by the diffusion and the non-linear
modules (i.e. S-boxes in AES) in the key schedule. The slow diffusion and low
nonlinearity in the AES key schedule make a subkey differential trail with a
small number of active S-boxes possible. This provides us with the high prob-
ability propagation of injection and correction of key differentials, resulting in
the availability of local collisions. According to the method mentioned in [1] for
searching for related-key differentials automatically, we can also reach the same

Transposition of AES Key Schedule 11

02 03 0101
01 0203 01
01010203
03 010102

Fig. 5. MixColumns matrix

conclusion. Moreover, the linearity of the AES key schedule allows the injection
and correction key patterns to overlap each other. The transposition of the sub-
keys is just the exchange of rows and columns for the output subscripts, the slow
diffusion and low nonlinearity features still exist. So we focus on another proper-
ty that makes the local collisions technique successful: the matching differential
property between the key schedule and the cipher round function.

The original key schedule is more vulnerable since there is almost no inter-
action between different rows, so an attacker can fix the four bytes in the same
column independently according to the result of MixColumns. This makes the
construction of correction differentials easy. Also, the shift operation is preserved
by the key schedule round. That is, the shift in the same row in the internal state
does not contradict the XOR operation in the same row in the key schedule: the
value in one byte is zero or the same (bdb = 0,b0®0 = b). All of these properties
are disrupted by changing the subkey column into the subkey row.

In order to explain in detail, we introduce the MixColumns and stress the
operations it uses.

MixColumns

The MixColumns step is a linear transformation which makes every input
byte influence four output bytes. Each 4-byte column is considered as a vector
and multiplied by a fixed 4 x 4 matrix. The matrix contains constant entries.
The vector-matrix multiplication and addition are done in GF(2%). Each byte
element is represented as polynomial with coefficients in GF(2). The addition in
GF(2%) is simple bitwise XOR of the respective bytes. The MixColumns matrix
is as Fig. 5.

For the constants in the matrix a hexadecimal notation is used: 701" refers
to the GF(2%) polynomial with the coefficients (00000001), i.e., it is the ele-
ment 1 of the Galois field; ”02” refers to the polynomial with the bit vector
(00000010), i.e., to the polynomial x; and ”03” refers to the polynomial with
the bit vector (00000011), i.e., the Galois field element x+1.Multiplication by 02
is implemented as a multiplication by x, which is a left shift by one bit, and a
modular reduction with P(z) = 2% + 2* + 23 4+ 2 + 1. Similarly, multiplication
by 03 can be implemented by a left shift by one bit and addition of the original
value followed by a modular reduction with P(x).

Without loss of generality, we take Fig. 4 as an illustration: Ak® injects a
one-byte difference to s o (Aké’o = a), then it is expanded by MixColumns to a
four-byte difference in column 0. Those four bytes are cancelled by the addition
of Ak**1. The column 0 inAk**! should be of special form: it is the result of

12 Transposition of AES Key Schedule

multiplying a vector (b,0,0,0)7 by the MixColumns matrix (the gray part in
Fig. 4, where b equals S-box(a) with the highest probability). The resulting
vector is called MC-column like in [2].

After transposing the output of subkey, the correction patterns in Ak**!
change from column-type to row-type. i.e., we need to generate MC-column in
row 0 of Ak**1(in this situation Ak**t is (02 - b,b,b,03 - b)). According to the
key schedule, the different bytes in the same row have a XOR relation with each
other. When the degree of the polynomials represented by 02 - b and 03 - b is
less than 8, there are the following relations: (02-b) &b =03-b,(03-b) &b =
02-b,(02-b) ® (03 -b) = b. However, these relations cannot assist to generate
and spread MC-column value. For example, take a backward direction, the row
differential value (02 - b,b,b,03 - b) of a subkey causes row differential pattern
(?7,03-b,0,02-b) for its previous subkey. This differential is not compatible with
the MC-column value (02 - b, b,b,03 - b) (more precisely, we need to check all of
the columns in the MixColumns matrix). So it is more difficult for an attacker to
choose a subkey difference to cancel the internal state differences deriving from
the disturbance. When we want to exploit the relations between 02 -a, 03 -a and
a, we need more non-zero disturbances in Ak’ for subsequent cancelling, which
will cause more active S-boxes in the internal state. On the other hand, when we
require the MC-column type value by row, we will get S-boxes involved in the
key schedule more quickly. Since the MC-column includes four non-zero bytes,
when we put these bytes in the same row, there is at least one active S-box in
each round of subkey for AES-128 and AES-256 (the original key schedule can
go without using the S-box for several rounds). As in Section 4.1, the subkey
pattern by row is not synchronized with the internal state which is spread by
column (due to the MixColumns operation rather than ”MixRows”).

6 Summary and Conclusion

In this paper, we analyze the security of AES after doing a transposition on
the output matrix of subkeys, while other conditions are totally the same as the
original key schedule. We point out that due to the weakness of the original key
schedule’s word type, our new key schedule is more secure. By this slight change
we obtain a higher security level for AES. First, our key schedule can prevent the
attacker from gaining free bytes of subkeys which are needed during the proce-
dure of the attack, so the number of targeted rounds can be reduced. Second, we
do not adopt the traditional idea of adding more non-linear operations, to avoid
related-key differential type attacks. We do not even require any change in the
iteration process of generating subkeys, that is, we do not need to speed up the
diffusion in the key schedule, or complicate the key schedule. However, we suc-
cessfully protect AES from the most devastating related-key attacks mentioned
in [3] and [2], which work against AES-192 and AES-256 with the full number of
rounds. The analysis in this paper suggests that current design criteria for key
schedules are not enough. As well as the speed of the diffusion and the amount

Transposition of AES Key Schedule 13

of non-linearity, the route, or position of diffusion propagation should get more
attention.

References

1. A. Biryukov, I. Nikolic, Automatic search for related-key differential character- istics
in byte-oriented block ciphers: Application to AES, Camellia, Khazad and others. In
H. Gilbert, editor, Eurocrypt 2010, LNCS, vol. 6110, pages 322-344, Springer, 2010.

2. A. Biryukov, D. Khovratovich, and I. Nikolic, Distinguisher and Related-Key Attack
on the Full AES-256", Crypto 2009, LNCS, vol. 5677, pages 231-249, Springer, 2009.

3. A. Biryukov and D. Khovratovich, Related-Key Cryptanalysis of the Full AES-192
and AES-2567, Asiacrypt 2009, LNCS, vol. 5912, pages 1-18, Springer, 2009.

4. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting,
Improved cryptanalysis of Rijndael, In B. Schneier, editor, FSE, LNCS, vol. 1978,
pages 213-230, Springer, 2000.

5. L. May, M. Henricksen, W. Millan, G. Carter, E. Dawson, Strengthening the key
schedule of the AES, In L.M. Batten, J. Seberry, editor, ACISP 2002, LNCS, vol.
2384, pages 226-240, Springer, 2002.

6. F. Armknecht and S. Lucks, Linearity of the AES Key Schedule, LNCS, vol. 3373,
pages 159-169, Springer, 2005.

7. J. Daemen and V. Rijmen, AES proposal: Rijndael, In The First AES Candidate
Conference, 1998.

8. J Choy, A Zhang, K Khoo, M. Henricksen, and A. Poschmann, AES Variants Se-
cure Against Related-Key Differential and Boomerang Attacks, Information Security
Theory and Practice: Security and Privacy of Mobile Devices in Wireless Commu-
nication, WISTP 2011, LNCS, vol. 6633, pages 191-207, Springer, 2011.

9. I. Nikolic, Tweaking AES, SAC 2010, LNCS, vol. 6544, pages 198-210, Springer,
2011.

10. S. Lucks, Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys, In
The Third AES Candidate Conference, pages 215-229, 2000.

11. Hiiseyin Demirci, and Ali Aydin Selguk, A Meet-in-the-Middle Attack on 8-Round
AES, proceedings of FSE 2008, LNCS, vol. 5086, pages 116-126, Springer, 2008.
12. O. Dunkelman, N. Keller, and A. Shamir, Improved Single-Key Attacks on 8-Round
AES-192 and AES-256, Asiacrypt 2010, LNCS, vol. 6477, pages 158-176, Springer,

2010.

13. Y Wei, J Lu, and Y Hu, Meet-in-the-Middle Attack on 8 Rounds of the AES Block
Cipher under 192 Key Bits, Information Security Practice and Experience, LNCS,
vol. 6672, pages 222-232, Springer, 2011

14. J. Kelsey, B. Schneier, and D. Wagner, Key-Schedule Cryptanalysis of IDEA,
G-DES, GOST, SAFER, and Triple-DES, Advances in Cryptology-CRYPTO’96,
pages 237-251, Springer, 1996.

