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Foreword

Graphs are certainly the single most important data structure in computer science,
mirroring somewhat the rôle sets play in mathematics. In fact, there is a very
close and obvious relationship between graphs and sets, viz., each graph can be
represented as a pair of sets, so very nearly we have something like a functor
between graphs and sets. In programming, this symmetry is somewhat relaxed, since
sets may as well be used for system construction, at least in the early design phases
of software development (later sets vanish more and more into the processes and
into the data structures actually implemented).

This book looks into the relationship between sets and graphs from different
angles. One notes first that the set representation of graphs takes in fact for granted
that the theory of sets is developed to such an extent that it may be usable for
this representation. Looking into the development of set theory, however, one sees
that there are many varieties of set theories around, so one probably wants to
fix the ground before one can stand on it. In this monograph, this leads to the
definition of sets that may be represented by graphs (in a curious reversal of rôles),
demanding the question of characterizing those sets and those graphs for which
such foundation issues arise. It gives rise to set graphs, roughly those graphs which
underlie hereditary sets, which carry such an important burden in the foundation of
set theory.

The authors examine the interplay of sets and graphs on a fairly fundamental
level, formulating their set theory very carefully in such a way that some of the
proofs become accessible to a proof assistant. They show that:

• one can find for every weakly extensional, acyclic digraph a Mostowski collapse
by finite sets so that no two vertices are sent to the same set by the decoration,

• every graph admits an orientation which is weakly extensional and acyclic,
so that one can regard its edges as membership arcs deprived of their natural
orientation,

through the set-based proof-checker Referee (also known as the grown-up version
of ÆtnaNova, it results from joint work of the two present Italian authors with
Jacob T. Schwartz and D. Cantone). A brief introduction into Referee is given as
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viii Foreword

well. Interestingly, Referee brings into the game the axiom of choice and not one
of its—admittedly less well known—competitors like the axiom of determinacy.
Technically, this happens through the arb operator familiar from languages like
SETL.

One might ask whether this approach is a major route our discipline will be
pursuing in the future: preparing the ground for machine-assisted proofs and then
doing the proofs proper by a proof assistant. Well, probably. In some areas in logic
and in complexity theory, proofs get so involved, so long, and so complicated
that one scientist alone might no longer be able to conquer them. The analogy
to programs comes to mind—programs tend to become so involved, so long, so
complicated, and so many-faceted that a single programmer or a team of developers
cannot really be its master any longer. But there is an important difference: programs
are ultimately written for being executed on a computer, but a proof is intended
to convey intellectual insight (and, of course, fun to its explorer), knowledge
administering systems notwithstanding.

Since the universe of discourse is finite (but in the last chapter), combinatorial
questions arise as well; the authors show that their approach renders counting certain
graphs fairly straightforward and direct. They apply some Markov chain technique
to the generation of random graphs, which at first sight looks like an unlikely
match for the questions for which these chains are employed by the authors, but
the technique soon turns out to an apt tool.

But one does not have to stop at finite objects, as the last chapter shows. Here
the necessary set theory needs to be expanded, so that infinite sets can be handled.
This excursion into infinity helps formulating and proving some properties which
arise when well-foundedness of the basic relations is relaxed, and it gives surprising
insights into Ramsey’s theorem from finite combinatorics.

We should be glad that this book has been written. It helps us to understand
the interplay of sets and graphs, in particular when wanting to look at graphs
from an axiomatic set theory point of view. The book is also attractive because it
formulates and solves some interesting combinatorial counting problems by directly
manipulating the objects involved (rather than, say, setting up a generating function
of some sort and manipulating it, which of course has also its merits). Finally, the
use of the Referee system is not a mere add-on. It rather conveys some illuminating
views into the inner working of some proofs requiring the power of set theory on
both ends, viz., the tool, and the objects to be manipulated.

Professor Emeritus of Software Technology Ernst-Erich Doberkat
and of Mathematics
Technische Universität Dortmund
Bochum, December 21, 2016



Preface

Will we say anything new on sets and graphs? Today’s scholars are so closely
acquainted with such entities—in theoretical computer science no less than in
mathematics—that a book devoted to sets and graphs runs the risk of arousing, at
best, an indulgent curiosity.

Why graphs? Without a good mastery of graphs, the design and analysis of
computer algorithms would be unaffordable.

Why sets? Set Theory is commonly, though often implicitly, placed in the
background of any other mathematical disciplines.

In particular, a graph, as customarily defined, is just a pair of finite sets: a set of
vertices and a set of edges, of which the latter is included in the Cartesian square
of the former. We see this reduction of graphs to sets neither as detracting from the
autonomy of Graph Theory nor, in any deep or practical sense, revealing. One of the
programmatic traits of this book is that graphs will endorse sets to the same extent
to which sets will endorse graphs.

There is little controversy nowadays on the basilar role of sets and on the
relevance of graphs for the development of algorithms. An obvious corollary then
is: even algorithms are reducible, via Graph Theory, to Set Theory. As an indirect
recognition of this, sets and associative maps (to wit, sets of ordered pairs) have
become built-in types in many programming languages. But, in our daily experience,
what abstractly speaking is just a set gets used in restrained ways; accordingly, in
specific contexts, specialized concrete representations become preferable to others.
As soon as concerns about representation arise, graphs pop up anew to the fore. This
hints at why we will invest in cross-fertilization rather than giving priority to either
graphs or sets in our investigation. Our undertaking, as we see it, is to exploit sets
to shed light on certain issues that concern graphs while retaining our freedom to
overturn perspective, whenever fit.

In the formal approach to Set Theory, a set is an object containing nothing
but other sets as elements. This view brings uniformity into the foundations of
mathematics and radically differs from the informal, naïve view according to which
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a set is a collection of elements whose nature we refrain from entering into. When
we work in a universe where everything is a set, membership becomes the only
relation we have to worry about and we find ourselves very close to Graph Theory.

This suggests a way in which graphs can represent sets: vertices will stand for
sets and the edge relation will mimic the membership relation. This representation
gives rise to interesting problems; in particular, it calls into play hypersets, whose
notion somewhat generalizes the today prevailing conception of sets by permitting,
e.g., membership to form cycles. By rooting sets into graphs, we are led to many
combinatorial, structural, and computational questions: we will, in fact, study
sets under the spotlights of combinatorial enumeration, canonical encodings by
numbers, and random generation.

This book will privilege combinatorial questions over algorithmic issues in order
to result in a more incisive manifesto. One of the exceptions will be our addressing
the validity problem for set-theoretic sentences. With regard to solvable cases of that
problem, the validity analysis is supported by graphs specially contrived to diagram
collections of potential counterexamples to an alleged theorem. Such graphs also
convey the causes of the combinatorial explosion that sometimes hinders logical
analysis from going through.

Given a set, we can easily manage to build a graph that reflects the inner
structure of that set. Doing this in the above-suggested manner will result in Directed
edges. Can we conversely, but starting with a graph whose edges are undirected,
find a set that conveniently represents it? Much of this book is devoted to an
investigation on the graphs devoid of orientation that underlie sets, which we call
set graphs. Through the study of their structure, we bring to light which graphs
can be “implicitly” represented by sets. We elucidate the complexity status of the
recognition problem for set graphs, characterize their class in terms of hereditary
graph classes, and put forth polynomial algorithms for certain graph classes. Very
little extant literature is concerned with the class of set graphs in its entirety, but
many subclasses of it—suffice it to mention claw-free graphs here—have been
studied since long. The set reading of graphs leads to simpler proofs of various
classical results on claw-free graphs. We have taken advantage of the set-theoretic
flavor of those proofs to formalize two of them with moderate effort in the set-
based proof-checker Referee; the resulting new proofs are presented in this book
in wealth of detail.

We will refrain, in general, from embarking on profound discussions about
the infinite. Infinite sets do exist to us, mainly because we wish to adhere to the
axioms of a standard set theory. Our hesitancy about the infinite is not grounded in
philosophy; we simply decided to limit our focus to finite combinatorics.

In seeming conflict with the intention just stated, at a well-advanced phase of the
exposition, we will not resist talking about a doubly stranded spiral formed by two
infinite sets and describing it by means of slick set-theoretic formulae. An infinite
graph will instantly show up that represents our spiral. Using it, we will shed light on
a celebrated result, fundamental to finite combinatorics, namely, Ramsey’s theorem.
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A Word on the Audience for Whom This Book Is Intended

Much of the content of this book originates from papers recently published
on scientific research journals, from which we selected topics which should be
accessible with moderate effort also to nonspecialists, in particular to graduate
students. The exercises put at the end of each chapter enable the reader to try her/his
hand on the various topics so as to develop personally a deeper understanding of the
subject matter.

This book assumes from the reader some familiarity with basic algorithm
complexity and with standard programming techniques; anyhow, our algorithmic
specifications will take the form of pseudo-code. To make our presentation as self-
contained as possible on various topics we treat, we summarize some presupposed
notions (e.g., NP-completeness) in panels which are spread all over the text.

The subject matter touches upon proof technology at some point; it is hence
desirable that our reader has had some previous exposure to first-order predicate
logic and formal methods. On the other hand, little knowledge of Set Theory and
Graph Theory is assumed. For this reason, we try to present what is needed from
those two areas of mathematics in a reasonably self-contained way, emphasizing
concepts likely to be important in continuation of the work begun here, rather than
technicalities. Foundational issues, for example, consideration of the strength or
necessity of axioms or the precise relationship of our formal treatment to other
weaker or stronger formalisms studied in the literature, are neglected.

Content of This Book

The introduction gives—mainly through examples—a rapid overview of the
authors’ way of combining the study of sets with the study of graphs.

Chapter 2 introduces two languages apt to support formal reasoning within
Set Theory and Graph Theory, respectively. The primitive endowments of these
languages rely on first-order predicate logic, and they are deliberately minimal;
convenient syntactic extensions are then introduced conservatively. In the case of Set
Theory, an inventory of sentences is produced from which the postulates of various
specific axiom systems can be drawn: among those, the Zermelo-Fraenkel axioms;
two axioms of opposite contents, namely, von Neumann’s axiom of foundation and
Aczel’s anti-foundation axiom; and another incompatible pair of sentences, namely,
Zermelo’s infinity axiom (inessential for most of this book) and Tarski’s axiom
enforcing that only finite sets exist. In the case of graphs, the essential terminology is
introduced, sometimes by resorting to the formal language in order to specify basic
graph-theoretic notions such as acyclicity; we also hint at how significant graph
theories often result from forbidding specific subgraphs.
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Chapter 3 is also concerned with basics. It introduces two hierarchies of sets, one
formed by the hereditarily finite sets, the other one—the celebrated von Neumann’s
cumulative hierarchy—also encompassing sets of infinite cardinality or rank. By
virtue of the hierarchical construction of these set universes, membership is a well-
founded relation over them, but this chapter also introduces two non-well-founded
variants of the universe of hereditarily finite sets. The hierarchical hereditarily finite
sets are intertwined with natural numbers, thanks to their anti-lexicographic order,
first studied by Ackermann and also recalled in this chapter. Each hereditarily finite
set is described in full by what we dub its pointed membership graph, whose
acyclicity flags whether it is a hierarchical set (as opposed to a proper hyperset).
A class of graphs named membership graph is also considered, which is broader
than the class of pointed membership graphs; unlike in a pointed membership
graph, there is no privileged vertex in a membership graph. Graphs closely akin
to membership graphs, whose edges are also meant to mimic membership, though
to a lesser degree of detail, are then exploited to solve some favorable cases of
the Entscheidungsproblem, namely, to determine whether a set-theoretic formula
subject to very stringent syntactical constraints is satisfiable or not.

The rest of the book is subdivided into two parts. Chapters 4 and 5 (along with
their supplementary Appendix A) explain under what circumstances, and how, sets
can conveniently model graphs; Chapters 6 through 8 investigate the converse issue:
when is it convenient to represent sets by graphs? Notice that the use of graphs
for handling the set-satisfaction problem mentioned at the end of the preceding
paragraph pertains—at a relatively abstract level—to the latter circle of ideas.

Specifically, Chap. 4 undertakes the study of the class of set graphs, each of
which results from a membership graph whose edge orientation has been forgotten.
Set graphs hence have undirected edges; moreover, they are connected; their
class includes graphs endowed with Hamiltonian paths and the so-called claw-free
graphs. Given a graph with undirected edges, the problem of establishing whether or
not it is a set graph is NP-complete; it amounts to finding an orientation of the edges
such that the resulting directed graph neither forms cycles nor has distinct vertices
endowed with the same children.

Chapter 5 presents recent proofs of two classical propositions concerning claw-
free graphs. Since these proofs rely on the fact that claw-free graphs are set graphs,
it is a straightforward task to develop them formally with the assistance of a
proof-checker knowledgeable on sets, named Referee. Thus, by reporting on a
concrete proof-checking experiment, this chapter offers a light introduction to proof
technology. To convey the character of a proof script verifiable by means of our
automated proof assistant, Appendix A shows excerpts of a formal proof of the
fact that every connected graph has a vertex whose removal does not disrupt its
connectedness.

Chapter 6 illustrates the usefulness of the set-to-graph correspondence by
resorting to it for an explicit count of how many sets t of cardinality n enjoy this
property: every element of t is also a subset of t. This result regards those hereditarily
finite sets over which membership is well founded. The Ackermann encoding of
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their graphs is then revisited, to show that it can be obtained by means of a partition-
refinement technique borrowed from algorithmics. A virtue of this technique is that
it extends naturally to provide an ordering of non-well-founded hereditarily finite
sets. This ordering can then be exploited for encoding non-well-founded hereditarily
finite sets by dyadic rational numbers.

Chapter 7 studies how to generate a well-founded set of “size” n at random,
so that each set of size n has equal probability to occur. Procedures of this kind
can be of use for testing the correctness of algorithm implementations or for
testing conjectures about data. Three general methods of generating combinatorial
objects uniformly at random are described, two of which are based on the so-called
combinatorial decomposition of the objects, while one is based on a Markov chain.

Chapter 8 broadens the scope of discussion to infinite sets and graphs. In
its formulation dating back to Zermelo’s original axiomatic system, the infinity
axiom exhibits a single infinite set; as shown in this chapter, this axiom can be
superseded by a sentence of greater syntactical simplicity, which brings into play
two infinite sets twisted together. The simplest infinite graph underlying a pair of
infinite sets that comply with this updated axiom can be used as a sort of abacus
for speculating on finite combinatorics, in particular while addressing Ramsey’s
celebrated theorem.
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