Lecture Notes in Computer Science

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Zurich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany More information about this series at http://www.springer.com/series/7407

Evolutionary Computation in Combinatorial Optimization

17th European Conference, EvoCOP 2017 Amsterdam, The Netherlands, April 19–21, 2017 Proceedings

Editors Bin Hu Austrian Institute of Technology Vienna Austria

Manuel López-Ibáñez University of Manchester Manchester UK

 ISSN 0302-9743
 ISSN 1611-3349
 (electronic)

 Lecture Notes in Computer Science
 ISBN 978-3-319-55452-5
 ISBN 978-3-319-55453-2
 (eBook)

 DOI 10.1007/978-3-319-55453-2
 ISBN 978-3-319-55453-2
 ISBN 978-3-319-55453-2
 ISBN 978-3-319-55453-2

Library of Congress Control Number: 2017933870

LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Combinatorial optimization is concerned with finding the optimal solution of problems with discrete variables. The field originates from applied mathematics and computer science, but it has seen contributions from operational research, decision-making, artificial intelligence, and machine learning. It is key to tackling diverse problems in science, industry, and business applications. These problems usually cannot be solved by exact methods within a reasonable time limit, and instead require the use of heuristic methods to provide high-quality or low-cost solutions in as short a time as possible. Heuristic methods include not only problem-specific heuristics, but most prominently metaheuristics, which are general-purpose methods that are relatively simple to apply to new problems. Among the earliest and most successful metaheuristics are evolutionary algorithms, originally inspired by the evolution of species by natural selection, together with various other stochastic local search methods, such as simulated annealing. More recent methods include ant colony optimization, inspired by the foraging behavior of some species of ants, and hybrid methods, such as matheuristics that combine exact and heuristic methods. The successful application of these methods to real-world combinatorial optimization problems is one of the main topics of these proceedings.

This volume contains the proceedings of EvoCOP 2017, the 17th European Conference on Evolutionary Computation in Combinatorial Optimization, that was held in Amsterdam, The Netherlands, during April 19–21, 2017. EvoCOP was held in 2001 as the first workshop specifically devoted to evolutionary computation in combinatorial optimization. It became an annual conference in 2004. EvoCOP is one of the four events of Evostar 2017. The other three are EuroGP (20th European Conference on Genetic Programming), EvoMUSART (6th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design), and EvoApplications (20th European Conference on the Applications of Evolutionary Computation, formerly known as EvoWorkshops).

Previous EvoCOP proceedings were published by Springer in the series *Lecture Notes in Computer Science* (LNCS volumes 2037, 2279, 2611, 3004, 3448, 3906, 4446, 4972, 5482, 6022, 6622, 7245, 7832, 8600, 9026, 9595). The table on the next page reports the statistics for each conference.

This year, 16 out of 39 papers were accepted after a rigorous double-blind process, resulting in a 41% acceptance rate. We would like to thank the quality and timeliness of our Program Committee members' work, especially since the reviewing period coincided with the Christmas holidays. Decisions considered both the reviewers' report and the evaluation of the program chairs. The 16 papers accepted cover both empirical and theoretical studies on a wide range of academic and real-world applications. The methods include evolutionary and memetic algorithms, large neighborhood search, estimation of distribution algorithms, beam search, ant colony optimization, hyper-heuristics, and matheuristics. Applications include both traditional domains, such

EvoCOP	LNCS vol.	Submitted	Accepted	Acceptance (%)
2017	10197	39	16	41.0
2016	9595	44	17	38.6
2015	9026	46	19	41.3
2014	8600	42	20	47.6
2013	7832	50	23	46.0
2012	7245	48	22	45.8
2011	6622	42	22	52.4
2010	6022	69	24	34.8
2009	5482	53	21	39.6
2008	4972	69	24	34.8
2007	4446	81	21	25.9
2006	3906	77	24	31.2
2005	3448	66	24	36.4
2004	3004	86	23	26.7
2003	2611	39	19	48.7
2002	2279	32	18	56.3
2001	2037	31	23	74.2

as the knapsack problem, vehicle routing, scheduling problems and SAT; and newer domains such as the traveling thief problem, location planning for car-sharing systems, and spacecraft trajectory optimization. Papers also study important concepts such as pseudo-backbones, phase transitions in local optima networks, and the analysis of operators. This wide range of topics makes the EvoCOP proceedings an important source for current research trends in combinatorial optimization.

We would like to express our appreciation to the various persons and institutions making this a successful event. First, we thank the local organization team led by Evert Haasdijk and Jacqueline Heinerman from the Vrije University Amsterdam. We thank Marc Schoenauer from Inria Saclay for his continued assistance in providing the MyReview conference management system and Pablo García Sánchez from the University of Cádiz for EvoStar publicity and website. Thanks are also due to SPECIES (Society for the Promotion of Evolutionary Computation in Europe and its Surroundings); in particular, Marc Schoenauer (President), Anna I Esparcia-Alcázar (Secretary and Vice-President), Wolfgang Banzhaf (Treasurer), and Jennifer Willies (EvoStar coordinator). Finally, we wish to thank the keynote speakers, Kenneth De Jong and Arthur Kordon.

Special thanks also to Christian Blum, Francisco Chicano, Carlos Cotta, Peter Cowling, Jens Gottlieb, Jin-Kao Hao, Jano van Hemert, Peter Merz, Martin Middendorf, Gabriela Ochoa, and Günther R. Raidl for their hard work and dedication at past editions of EvoCOP, making this one of the reference international events in evolutionary computation and metaheuristics.

February 2017

Bin Hu Manuel López-Ibáñez

Organization

EvoCOP 2017 was organized jointly with EuroGP 2017, EvoMUSART 2017, and EvoApplications 2017.

Organizing Committee

Program Chairs

Bin Hu Manuel López-Ibáñez	AIT Austrian Institute of Technology, Austria University of Manchester, UK
Local Organization	
Evert Haasdijk Jacqueline Heinerman	Vrije University Amsterdam, The Netherlands Vrije University Amsterdam, The Netherlands
Publicity Chair	
Pablo García-Sánchez	University of Cádiz, Spain

EvoCOP Steering Committee

Christian Blum	IKERBASQUE and University of the Basque Country,
	Spain
Francisco Chicano	University of Málaga, Spain
Carlos Cotta	University of Málaga, Spain
Peter Cowling	University of York, UK
Jens Gottlieb	SAP AG, Germany
Jin-Kao Hao	University of Angers, France
Jano van Hemert	Optos, UK
Peter Merz	Hannover University of Applied Sciences and Arts,
	Germany
Martin Middendorf	University of Leipzig, Germany
Gabriela Ochoa	University of Stirling, UK
Günther Raidl	Vienna University of Technology, Austria

Society for the Promotion of Evolutionary Computation in Europe and its Surroundings (SPECIES)

Marc Schoenauer	President
Anna I Esparcia-Alcázar	Secretary and Vice-President
Wolfgang Banzhaf	Treasurer
Jennifer Willies	EvoStar coordinator

Program Committee

Adnan Acan Eastern Mediterranean University, Turkey University of Málaga, Spain Enrique Alba University of Manchester, UK Richard Allmendinger Cologne University of Applied Sciences, Germany Thomas Bartz-Beielstein University of Angers, France Matthieu Basseur Vorarlberg University of Applied Sciences, Germany Hans-Georg Beyer Austrian Institute of Technology, Austria Benjamin Biesinger IKERBASQUE - Basque Foundation for Science, Spain Christian Blum University of Stirling, UK Sandy Brownlee Pedro Castillo Universidad de Granada, Spain Francisco Chicano University of Málaga, Spain CINVESTAV-IPN, Mexico Carlos Coello Coello Peter Cowling University of Bradford, UK University of Udine, Italy Luca Di Gaspero Karl Doerner Johannes Kepler University Linz, Austria Benjamin Doerr LIX-Ecole Polytechnique, France Carola Doerr Max Planck Institute for Informatics, Germany Universitá di Napoli Federico II, Italy Paola Festa University of Marburg, Germany Bernd Freisleben Carlos García-Martínez University of Córdoba, Spain University of Angers, France Adrien Goeffon Jens Gottlieb SAP, Germany University of Vienna, Austria Walter Gutjahr University of Valenciennes, France Said Hanafi Jin-Kao Hao University of Angers, France Emma Hart Edinburgh Napier University, UK SINTEF Applied Mathematics, Norway Geir Hasle Poznan University of Technology, Poland Andrzej Jaszkiewicz István Juhos University of Szeged, Hungary University of Nottingham, UK Graham Kendall Ahmed Kheiri Cardiff University, UK Kyushu Institute of Technology, Japan Mario Köppen University of Angers, France Frédéric Lardeux Rhyd Lewis Cardiff University, UK Lille 1 University, France Arnaud Liefooghe José Antonio Lozano University of the Basque Country, Spain University of Malaga, Spain Gabriel Luque David Meignan University of Osnabrück, Germany University of Granada, Spain Juan Julian Merelo University of Economics, Wroclaw, Poland Krzysztof Michalak University of Leipzig, Germany Martin Middendorf Christine L. Mumford Cardiff University, UK Vienna University of Technology, Austria Nysret Musliu University of Stirling, UK Gabriela Ochoa

Beatrice Ombuki-Berman	Brock University, Canada
Luis Paquete	University of Coimbra, Portugal
Mario Pavone	University of Catania, Italy
Paola Pellegrini	French Institute of Science and Technology
	for Transport, France
Francisco J.B. Pereira	Universidade de Coimbra, Portugal
Matthias Prandtstetter	Austrian Institute of Technology, Austria
Jakob Puchinger	SystemX-Centrale Supélec, France
Rong Qu	University of Nottingham, UK
Günther Raidl	Vienna University of Technology, Austria
Maria Cristina Riff	Universidad Técnica Federico Santa María, Chile
Eduardo Rodriguez-Tello	Civerstav – Tamaulipas, Mexico
Andrea Roli	Università di Bologna, Italy
Peter Ross	Edinburgh Napier University, UK
Frédéric Saubion	University of Angers, France
Patrick Siarry	University of Paris 12, France
Kevin Sim	Edinburgh Napier University, UK
Jim Smith	University of the West of England, UK
Giovanni Squillero	Politecnico di Torino, Italy
Thomas Stützle	Université Libre de Bruxelles, Belgium
El-ghazali Talbi	Université des Sciences et Technologies de Lille, France
Renato Tinós	University of Sao Paulo, Brazil
Nadarajen Veerapen	University of Stirling, UK
Sébastien Verel	Université du Littoral Côte d'Opale, France
Bing Xue	Victoria University of Wellington, New Zealand
Takeshi Yamada	NTT Communication Science Laboratories, Japan

Contents

A Computational Study of Neighborhood Operators for Job-Shop Scheduling Problems with Regular Objectives	1
A Genetic Algorithm for Multi-component Optimization Problems: The Case of the Travelling Thief Problem Daniel K.S. Vieira, Gustavo L. Soares, João A. Vasconcelos, and Marcus H.S. Mendes	18
A Hybrid Feature Selection Algorithm Based on Large Neighborhood Search	30
A Memetic Algorithm to Maximise the Employee Substitutability in Personnel Shift Scheduling Jonas Ingels and Broos Maenhout	44
Construct, Merge, Solve and Adapt Versus Large Neighborhood Search for Solving the Multi-dimensional Knapsack Problem: Which One Works Better When?	60
Decomposing SAT Instances with Pseudo Backbones	75
Efficient Consideration of Soft Time Windows in a Large Neighborhood Search for the Districting and Routing Problem for Security Control Bong-Min Kim, Christian Kloimüllner, and Günther R. Raidl	91
Estimation of Distribution Algorithms for the Firefighter Problem	108
LCS-Based Selective Route Exchange Crossover for the Pickup and Delivery Problem with Time Windows Miroslaw Blocho and Jakub Nalepa	124
Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO Luís F. Simões, Dario Izzo, Evert Haasdijk, and A.E. Eiben	141
Optimizing Charging Station Locations for Electric Car-Sharing Systems Benjamin Biesinger, Bin Hu, Martin Stubenschrott, Ulrike Ritzinger, and Matthias Prandtstetter	157

Selection of Auxiliary Objectives Using Landscape Features and Offline Learned Classifier	173
Anton Bassin and Arina Buzdalova	
Sparse, Continuous Policy Representations for Uniform Online Bin Packing via Regression of Interpolants John H. Drake, Jerry Swan, Geoff Neumann, and Ender Özcan	189
The Weighted Independent Domination Problem: ILP Model and Algorithmic Approaches Pedro Pinacho Davidson, Christian Blum, and José A. Lozano	201
Towards Landscape-Aware Automatic Algorithm Configuration: Preliminary Experiments on Neutral and Rugged Landscapes	215
Understanding Phase Transitions with Local Optima Networks: Number Partitioning as a Case Study <i>Gabriela Ochoa, Nadarajen Veerapen, Fabio Daolio,</i> <i>and Marco Tomassini</i>	233
Author Index	249