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Abstract

This work deals with the so-called weighted independent domination problem, which
is an NP -hard combinatorial optimization problem in graphs. In contrast to previous the-
oretical work from the literature, this paper considers the problem from an algorithmic
perspective. The first contribution consists in the development of an integer linear pro-
gramming model and a heuristic that makes use of this model. Second, two greedy heuris-
tics are proposed. Finally, the last contribution is a population-based iterated greedy al-
gorithm that takes profit from the better one of the two developed greedy heuristics. The
results of the compared algorithmic approaches show that small problem instances based
on random graphs are best solved by an efficient integer linear programming solver such
as CPLEX. Larger problem instances are best tackled by the population-based iterated
greedy algorithm. The experimental evaluation considers random graphs of different sizes,
densities, and ways of generating the node and edge weights.

1 Introduction

The so-called weighted independent domination (WID) problem is a combinatorial optimiza-
tion problem that was introduced in [4]. The problem is an extension of the well-known
independent domination (ID) problem. Given an undirected graph G = (V,E), V is the set
of nodes and E refers to the set of edges. An edge e ∈ E that connects nodes u 6= v ∈ V
is equally denoted by (u, v) and by (v, u). The neighborhood N(v) of a node v ∈ V is de-
fined as N(v) := {u ∈ V | (v, u) ∈ E}, the closed neighborhood N [v] of a node v ∈ V is
defined as N [v] := N(v) ∪ {v}, and the set of edges incident to a node v ∈ V is defined as
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δ(v) := {e = (v, u) ∈ E}. Given an undirected graph G = (V,E), a subset D ⊆ V of the
nodes is called a dominating set if every node v ∈ V \D is adjacent to at least one node from
D, that is, if for every node v ∈ V \D exists at least one node u ∈ D such that v ∈ N(u).
Furthermore, a set I ⊆ V is called an independent set if no two nodes from I are adjacent
to each other. Correspondingly, a subset D ⊆ V is called an independent dominating set if
D is both an independent set and a dominating set. Finally, given an independent domi-
nating set D ∈ V , for all v ∈ V \ D we define the D-restricted neighborhood N(v | D) as
N(v | D) := N(v) ∩ D, that is, the neighborhood of v is restricted to all its neighbors that
are in D.

In the WID problem we are given an undirected graph G = (V,E) with node and edge
weights. More specifically, for each v ∈ V , respectively e ∈ E, we are given an integer weight
w(v) ≥ 0, respectively w(e) ≥ 0. The WID problem consists in finding an independent
dominating set D in G that minimizes the following cost function:

f(D) :=
∑
u∈D

w(u) +
∑

v∈V \D

min{w(v, u) | u ∈ N(v | D)} (1)

In words, the objective function value of D is obtained by the sum of the weights of the nodes
in D plus the sum of the weights of the minimum-weight edges that connect the nodes that
are not in D to nodes that are in D. As an example consider the graphics in Figure 1. The
node weights are indicated inside the nodes and the edge weights are provided besides the
edges. A possible input graph is shown in Figure 1a. An optimal minimum weight dominating
set (the set of gray nodes) is shown in Figure 1b. However, note that this set is not an inde-
pendent set because the two nodes that form the set are adjacent to each other. An optimal
minimum weight independent dominating set1 is given in Figure 1c. Note that for both, the
minimum weight dominating set problem and the minimum weight independent dominating
set problem, the edge weights are not considered. Finally, the optimal solution to the WID
problem is shown in Figure 1d. The minimum weight edges that are chosen to connect nodes
not in D to nodes in D are indicated with bold lines. The objective function value of this
solution is 13, which is composed of the nodes weights (2 + 1 + 2) and the edge weights (4
+ 1 + 3).

1.1 Our Contribution

So far, the WID problem has only been considered from a theoretical perspective. It is easy
to see that the problem is NP -hard. This is because with w(v) = 1 for all v ∈ V and w(e) = 0
for all e ∈ E the problem reduces to the independent domination problem which was shown
to be NP -hard in [3]. A linear time algorithm for the WID problem in series-parallel graphs
was proposed in [4]. In this work we consider the WID problem in general graphs from
an algorithmic perspective. Our contributions are as follows. First, we present an integer
linear programming (ILP) model for the WID problem, together with an ILP-based heuristic.
Second, we propose two different greedy heuristics for solving the problem. The first one is
known from the minimum weight independent dominating set problem, while the second one is

1In this problem, given an undirected graph with node weights, the goal is to find an independent dominating
set for which the sum of the weights of the nodes is minimal.
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(b) Minimum weight
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(d) Optimal solution to
the WID problem.

Figure 1: Example that relates the WID problem with the minimum weight dominating set
problem and with the minimum weight independent dominating set problem.

specifically developed for the WID problem. Finally, we propose a so-called population-based
iterated greedy (PBIG) algorithm. This algorithm employs an iterated greedy metaheuristic
in a population-based fashion, and can therefore be seen as a hybrid between methods based
on local search and population-based methods.

1.2 Related Work

On one side, there is related work for problems similar to the one considered in this work. The
minimum independent dominating set problem, for example, has recently been tackled by a
greedy randomized adaptive search procedure (GRASP) in [12]. Another related problem is
the minimum weight dominating set problem. This problem has been quite popular in recent
years as a test case for metaheuristics. The most recent research efforts for this problem
have led to the development of an ant colony optimization approach and a genetic algorithm
in [10], a hybrid evolutionary algorithm in [5], a hybrid approach combining iterated greedy
algorithms and an ILP solver in a sequential way in [2], and a memetic algorithm in [7].

On the other side, there is related work concerning the employed optimization technique,
that is, PBIG. In general, iterated greedy (IG) algorithms have shown to be able to work
very well in the context of problems for which a good and fast greedy heuristic is known.
Prime examples include those to various scheduling problems such as [11, 6]. The first PBIG
approach was proposed in the context of the minimum weight vertex cover problem in [1].
Later, PBIG was also applied to the delimitation and zoning of rural settlements [9] and, as
mentioned above, to the minimum weight dominating set problem [2].

1.3 Organization

The remainder of this paper is organized as follows. In Section 2 an ILP model for the
WID problem is proposed. The greedy heuristics are outlined in Section 3, the ILP-based
heuristic is presented in Section 4, and the PBIG approach is described in Section 5. Finally,
an extensive experimental evaluation is provided in Section 6 and conclusions as well as an
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outlook to future work is given in Section 7.

2 An ILP Model

The proposed ILP uses three sets of binary variables. For each node v ∈ V it uses a binary
variable xv. Moreover, for each edge e ∈ E the model uses a binary variable ye and a binary
variable ze. Hereby, xv indicates if v is chosen for the solution. Moreover, ze indicates
if e ∈ E is selected for connecting a non-chosen node to a chosen one. Variable ye is an
indicator variable, which indicates if e is choosable, or not.

(ILP) min
∑
v∈V

xvw(v) +
∑
e∈E

zew(e)

s.t. xv + xu ≤ 1 for e = (u, v) ∈ E
xv + xu = ye for e = (u, v) ∈ E
ze ≤ ye for e ∈ E

xv +
∑

u∈N(v)

xu ≥ 1 for v ∈ V

xv +
∑
e∈δ(v)

ze ≥ 1 for v ∈ V

xv ∈ {0, 1} for v ∈ V
ye ∈ {0, 1} for e ∈ E
ze ∈ {0, 1} for e ∈ E

(2)

(3)

(4)

(5)

(6)

(7)

Hereby, constraints (3) are the independent set constraints, that is, they make sure that
no two adjecent nodes can form part of the solution. Constraints (4) ensure the proper setting
of the indicator variables. Note that edges that contribute to the objective function value
must always connect a node that is not chosen for the solution with a node that is in the
solution. Therefore, if—concerning an edge e = (u, v)—either v or u is in the solution, variable
ye is forced to take value one, which indicates that this edge is choosable. Constraints (5)
relate the indicator variables with the variables that actually show which edges are chosen.
In particular, if an indicator variable ye has value zero, ze is forced to take value zero, which
means e cannot be chosen. Constraints (6) are the dominating set constraints. They ensure
that for each node v ∈ V , either the node itself or at least one of its neighbors must form
part of the solution. Finally, constraints (7) ensure that each node v ∈ V that does not form
part of the solution—that is, when xv = 0—is connected by an edge to a node that forms
part of the solution. Due to the fact that the optimization goal concerns minimization, the
edge with the lowest weight is chosen for this purpose.

3 Greedy Heuristics

The first one of two different greedy heuristics developed in this work is a simple extension of
a well-known heuristic for the minimum weight independent dominating set problem. Given
an input graph G, this heuristic starts with an empty solution S = ∅ and adds, at each step,
exactly one node from the remaining graph G′ to S. Initally, the remaining graph G′ is a
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Algorithm 1 Greedy Heuristic (Greedy1)

1: input: a undirected graph G = (V,E) with node and edge weights
2: S := ∅
3: G′ := G
4: while V ′ 6= ∅ do
5: v∗ := argmax{ |N(v|G′)|

w(v) | v ∈ V ′}
6: S := S ∪ {v∗}
7: Remove from G′ all nodes from N [v | G′] and their incident edges
8: end while
9: output: An independent dominating set S of G

copy of G. After adding a node v ∈ V ′ to S, all nodes from N [v | G′]—that is, from the
closed neighborhood of v in G′—are removed from V ′. Moreover all their incident edges are
removed from E′. In this way, only those nodes that maintain the property of S being an

independent set may be added to S. At each step, the node v ∈ V ′ that maximizes |N(v|G′)|
w(v)

is chosen to be added to S, where N(v | G′) refers to the neighborhood of v in G′. In other
words, nodes with a high degree in the remaining graph G′ and with a low node weight are
preferred. Note that this greedy heuristic does not take the edge weights into account. They
are only considered when calculating the objective function value of the final solution S. The
pseude-code of this heuristic, henceforth referred to as Greedy1, is shown in Algorithm 1.

In contrast to Greedy1, the second greedy heuristic is designed to take into account
the edge weights already during the process of constructing a solution. The algorithmic
framework of this greedy heuristic—henceforth denoted by Greedy2—is the same as the one
of Greedy1. However, the way in which a node is chosen at each step is different. For the
description of this greedy heuristic the following notations are required. First, the maximum
weight of any edge in E is denoted by wmax. Then, let S ∈ V be a partial solution, that is,
S is an independent set which is not yet a dominating set, but which can be extended to be
a dominating set. The auxiliary objective function value faux(S) is defined as

∑
v∈V c(v | S),

where c(v | S) is called the contribution of node v with respect to partial solution S. Given
S, these contributions are defined as follows:

1. If v ∈ S: c(v | S) := w(v)

2. If v /∈ S and N(v) ∩ S = ∅: c(v | S) := wmax

3. If v /∈ S and N(v) ∩ S 6= ∅: c(v | S) := min{w(e) | e = (v, u), u ∈ S}

Note that in the case of S being a complete solution, it holds that f(S) = faux(S). Now, in
order to obtain Greedy2, line 5 of Algorithm 1 must be exchanged with the following one:

v∗ := argmin
{
faux(S ∪ {v}) | v ∈ V ′

}
(8)

4 Heuristic Based on the ILP Model

One possiblity to take profit from the ILP model outlined in Section 2 is to devise a heuristic
based on graph reduction. The main idea is to remove a certain percentage of the edges with
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Figure 2: Example for graph reduction. The edge set E of the input graph G consists of all
dashed and continuous lines. The edge set E′ of the reduced graph G′ only consists of the
continous lines.

the highest weights from the input graph G, which results in a reduced graph G′. Then, a
general-purpose ILP solver such as CPLEX is used to solve the problem in G′, forcing that
the provided solution is also a feasible solution for G. However, this is not trivial, as indicated
by the example in Figure 2. In this example, the edge set E of the input graph G consists of
all dashed and continuous lines. The edge set E′ of the reduced graph G′ only consists of the
continous lines. A feasible solution in the original graph consists of exactly one of the four
nodes. As a consequence, the remaining three nodes must be connected to the chosen node.
Observe that none of these solutions can be generated in the reduced graph. Therefore, for
solving the problem in G′ we devised the following ILP model, which makes use of additional
binary variables pv for all v ∈ V . Moreover, let wv denote the weight of the edge with the
highest weight of all those edges incident to v, that is, wv := max{w(e) | e ∈ δ(v)}.

(ILP2) min
∑
v∈V

(xvw(v) + pvwv) +
∑
e∈E′

zew(e)

s.t. xv + xu ≤ 1 for e = (u, v) ∈ E
xv + xu = ye for e = (u, v) ∈ E′

ze ≤ ye for e ∈ E′

xv +
∑

u∈N(v)

xu ≥ 1 for v ∈ V

xv + pv +
∑

e∈δ′(v)

ze ≥ 1 for v ∈ V

xv, pv ∈ {0, 1} for v ∈ V
ye ∈ {0, 1} for e ∈ E′

ze ∈ {0, 1} for e ∈ E′

(9)

(10)

(11)

(12)

(13)

(14)

Note that constraints (10) and the neighborhood function N in constraints (13) are de-
fined using input graph G. This is done such that the set of nodes chosen in any solution
form a valid solution for the original input graph G. In contrast, constraints (11), (12) and
the incidence function δ′() of constraints (14) refer to the edge set E′ of the reduced graph
G′. This is because for a solution of ILP2 only edges of the reduced graph may be chosen.
In comparison to the original ILP, ILP2 has an objective function which is augmented by the
term

∑
v∈V pv · wv and the left-hand-side of constraints (14) is augmented by summing pv.

This has the effect that, in those cases in which any feasible solution for G causes that node v
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cannot be connected to any chosen node using an edge from E′, variable pv is forced to take
value one. This, in turn, results in summing the weight of the highest-weight edge from E
which is incident to v to the objective function value.

In summary, the ILP-based heuristic—henceforth called Ilp-Heuristic—works as fol-
lows. First, heuristic Greedy2 is applied to G. Second, graph G is reduced by removing X%
of the highest-weight edges, without removing any edges used by the solution of Greedy2
and without removing more than (100 −X)% of the edges incident to any node in G. This
is done by ordering all edges in E according to decreasing edge weight, and considering one
edge after the other for removal, from left to right. This process results in a graph G′. Then,
CPLEX is applied to G′ using model ILP2. Moreover, the solution of Greedy2 is provided
as a warm-start to CPLEX. This process results in a set S′ of chosen nodes. On the basis of
S′ we generate the corresponding solution in G by simply connecting any node in V \S′ using
the edge from E with the lowest weight to any of the nodes in S′. Note that by preventing any
edges used in the Greedy2 solution from being removed from G during the graph reduction
step, the solution provided by Ilp-Heuristic must always be at least as good as the one
provided by Greedy2.

5 PBIG: Population-Based Iterated Greedy

A high level description of the implemented PBIG approach is given in Algorithm 2. Apart
from the input graph G, PBIG requires values for five parameters: (1) the population size
psize ∈ Z+, (2) the lower bound (Dl) and the upper bound (Du) for the degree of destruc-
tion applied to each solution of the population at each iteration, (3) the determinism rate
drate ∈ [0, 1], and (4) the candidate list size lsize > 0. The latter two parameters control the
greediness of the probabilistic solution (re-)construction procedure. Moreover, note that for
the values of the above-mentioned bounds it must hold that 0 ≤ Dl ≤ Du ≤ 1. For the
following description, each solution S is a subset of the nodes of V , has an objective function
value f(S), and an individual, possibly dynamic, destruction rate DS .

The algorithm works as follows. First, the psize solutions of the initial population are gen-
erated by function GenerateInitialPopulation(psize, drate, lsize) (see line 2 of Alg. 2). Afterwards,
each iteration consists of the following steps. First, an empty population Pnew, called offspring
population, is created. Then, each solution S ∈ P is partially destroyed using procedure De-
stroyPartially(S) (see line 6 of Alg. 2). This results in a partial solution Ŝ. On the basis of
Ŝ, a complete solution S′ is then constructed using procedure Reconstruct(Ŝ, drate, lsize) (see
line 7 of Alg. 2). Then, the destruction rate DS of solution S is adapted depending on the
quality of solution S′ in function AdaptDestructionRate(S, S′). Each newly obtained complete
solution is stored in Pnew. Note that the two phases of destruction and re-construction are
applied to all solutions from P independently of each other. When the iteration is completed,
procedure Accept(P,Pnew) selects the best psize solutions from P ∪Pnew for the population of
the next iteration. In the case of two solutions from P ∪ Pnew being equal, the criterion used
for tie-breaking is based on the individual destruction rates. More specifically, the solution S
with the highest individual destruction rate DS is preferred over the other one. Finally, the
algorithm terminates when a predefined CPU time limit is reached, and the best found solu-
tion is returned. The four procedures procedures that form the core of PBIG are described
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Algorithm 2 PBIG for the WID problem

1: input: input graph G, parameters psize > 0, Dl, Du, drate, lsize ∈ [0, 1]
2: P := GenerateInitialPopulation(psize, drate, lsize)
3: while termination condition not satisfied do
4: Pnew := ∅
5: for each candidate solution S ∈ P do
6: Ŝ := DestroyPartially(S)
7: S′ := Reconstruct(Ŝ, drate, lsize)
8: AdaptDestructionRate(S, S′)
9: Pnew := Pnew ∪ {S′}

10: end for
11: P := Accept(P,Pnew)
12: end while
13: output: argmin {f(S) | S ∈ P}

in more detail in the following.

GenerateInitialPopulation(psize, drate, lsize): This function generates psize solutions for the ini-
tial population. For this purpose it uses the mechanism of Greedy22 (see Section 3) in a
probabilistic way. At each construction step, first, a random number δ ∈ [0, 1] is generated.
In case δ ≤ drate, the best node according to the greedy function is chosen. Otherwise, a
candidate list of size min{|V ′|, lsize}, where V ′ ⊆ V are the nodes that can be selected at the
current construction step, is generated, and one of the nodes from the candidate list is chosen
uniformly at random. Note also that the initial destruction rate (DS) of each solution S is
set to the lower bound Dl for the destruction rates.

DestroyPartially(S): In this function, max{3, bDS · |S|c} randomly selected nodes are removed
from S, where DS is the current individual destruction rate of solution S.

Reconstruct(Ŝ, drate, lsize): Given as input a partial solution Ŝ, this function re-constructs a
complete solution S′ in the same way in which solutions are probabilistically constructed in
the context of generating the initial population (see above). Moreover, the initial destruction
rate DS′ of S′ is set to Dl.

AdaptDestructionRate(S, S′): The individual destruction rate DS of solution S (from which
partial solution Ŝ was obtained) is updated on the basis of the lower bound Dl and the upper
bound Du as follows. If f(S′) < f(S), the value of DS is set back to the lower bound Dl.
Otherwise, the value of DS is incremented by a certain amount. After initial experiments, we
determined this amount to be 0.05. If the value of DS , after this update, exceeds the upper
bound Du, it is set back to the lower bound Dl.

Note that the idea behind this way of dynamically changing the value of DS is as follows.
As long as the algorithm is able to improve a solution using a low destruction rate, this rate
is kept low. In this way, the re-construction is faster. Only when the algorithm seems not to

2Note that Greedy2 is chosen over Greedy1 because, as it will be shown later, Greedy2 generally works
better than Greedy1.
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be able to improve over a solution, the individual destruction rate of this solution is increased
in a step-wise manner.

6 Experimental Evaluation

The following five algorithmic approaches are evaluated on a variety of benchmark instances:
(1) Greedy1, (2) Greedy2, considering edge-weights during the solution construction, (3)
the application of the ILP solver CPLEX to the ILP model presented in Section 2 (Cplex),
(4) the ILP-based heuristic (Ilp-Heuristic), and (5) Pbig. All techniques were implemented
in ANSI C++ using GCC 4.6.3 for compiling the software. Moreover, we used CPLEX version
12.6 in single-threaded execution. The experimental results that are presented in the following
were obtained on a cluster of computers with Intel R© Xeon R© CPU 5670 CPUs of 12 nuclei
of 2933 MHz and (in total) 32 Gigabytes of RAM. For each run of CPLEX we allowed a
maximum of 2 Gigabytes of RAM, which was never reached within the alloted computation
time. In the following, first, the set of benchmark instances is described. Then, a detailed
analysis of the experimental results is presented.

6.1 Benchmark Instances

For the evaluation of the proposed algorithms we used random graphs of various sizes and
densities. In particular, we generated graphs of 100, 500 and 1000 nodes, that is, |V | ∈
{100, 500, 1000}. Edges between nodes were generated totally at random, with a given prob-
ability ep for each edge. This probability controls the density of the graph. In particular, we
considered ep ∈ {0.05, 0.15, 0.25}. Three different schemes for generating the node and edge
weights were considered. In the first scheme, both node and edge weights were drawn uni-
formly at random from {0, . . . , 100}. Henceforth we call the resulting graphs neutral graphs.
In the second scheme, node weights were drawn uniformly at random from {0, . . . , 1000} and
edge weights were drawn uniformly at random from {0, . . . , 10}. In these graphs, henceforth
called node-oriented graphs, the choice of the nodes is presumably very important because
of the high weights associated to the nodes. Finally, in the third scheme node weights were
drawn uniformly at random from {0, . . . , 10} and edge-weights were drawn uniformly at ran-
dom from {0, . . . , 1000}. In these edge-oriented graphs, the choice of the nodes is important
due to edges that are made available for connecting non-chosen nodes to chosen nodes. For
each combination of graph size, edge probability, and weight generation scheme we produced
10 problem instances. This makes a total of 270 graphs.

6.2 Tuning of PBIG

The five concerned parameters are the following ones: psize, D
l, Du, drate and lsize. The auto-

matic configuration tool irace [8] was applied separately for each combination of the number
of nodes and the weight generation scheme. Note that no separate tuning was performed
concerning the graph density (depending on ep). This is because, after initial runs, it was
shown that the other parameters have a higher influence on the behavior of the algorithm.
Summarizing, irace was applied 9 times with a budget of 1000 applications of Pbig per tuning
run.

For each application of Pbig a time limit of |V |/5 CPU seconds was given. For each run
of irace, two tuning instance were generated for each combination of number of nodes, graph

9



Table 1: Results of tuning Pbig with irace.

Weight scheme |V | psize (Dl, Du) drate lsize
100 100 (0.7, 0.7) 0.3 10

neutral 500 100 (0.5, 0.9) 0.0 10
1000 100 (0.4, 0.4) 0.3 10

100 50 (0.5, 0.5) 0.3 10
node-oriented 500 50 (0.6, 0.6) 0.5 10

1000 100 (0.5, 0.5) 0.3 10

100 100 (0.5, 0.5) 0.0 5
edge-oriented 500 100 (0.5, 0.5) 0.0 10

1000 100 (0.4, 0.4) 0.0 10

density, and weight generation scheme. This gives a total of six tuning instances per run of
irace. The following parameter value ranges were considered for each tuning run:

• psize ∈ {1, 10, 50, 100}.

• For the lower and upper bound values of the destruction percentage, the following value
combinations were considered: (Dl, Du) ∈ {(10,10), (20,20), (30,30), (40,40), (50,50),
(60,60), (70,70), (80,80), (90,90), (10,50), (30,70), (50,90)}. Note that in those cases in
which both bounds have the same value, the percentage of deleted nodes is always the
same.

• drate ∈ {0.0, 0.3, 0.5, 0.7, 0.9}.

• lsize ∈ {1, 3, 5, 10}.

The results of the tuning processes are shown in Table 1. The trends are very clear. The
population size should be rather high, the determinism rate rather low, and the candidate
list size rather high. Moreover, a dynamically changing value of the destruction rate does not
seem to be necessary. In most cases a fixed value of around 0.5 is selected.

6.3 Numerical Results

The results are presented in numerical form in Table 2, which has the following format. The
first three table columns indicate the number of nodes in the graph (|V |), the weight gen-
eration scheme, and the graph density in terms of the edge probability (ep). The results
of Greedy1, Greedy2 and Ilp-Heuristic are presented by means of two columns each.
The first column presents in each row the average result obtained for the corresponding 10
problem instances. The second column provides the average computation times (in seconds).
Pbig was applied with a computation time limit of |V |/5 seconds to each problem instance.
We provide the average results in the first column and the average computation times at
which these results were found in the second column. Cplex was applied with two different
computation time limits. In the columns with heading Cplex we present the results that
were obtained with the same computation time limit as Pbig, while the columns with head-
ing Cplex-L contain the results were the computation time limit was set to 3600 seconds
per application. In both cases, the first one of the two columns presents the average of the
objective function values of the best solutions found within the computation time limit for
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the 10 problem instances of each row. The second column indicates the average optimality
gaps (in percent). Note that when the average optimality gap is zero, all 10 corresponding
instances were solved to optimality. Finally note that Ilp-Heuristic was applied with a
graph reduction of X = 20% and with the same computation time limit as Cplex-L. The
best result of each table row is shown with gray background.

The experimental results allow us to make the following observations:

• Concerning the comparison between Greedy1 and Greedy2 it can be observed that,
generally, Greedy2 outperforms Greedy1 in the context of neutral graphs and edge-
oriented graphs. Only in the context of node-oriented random graphs Greedy1 out-
performs Greedy2. This shows that, generally, it is a good idea to take the edge
weights already into account during the construction of a solution. Only when the edge
weights are not important in comparison with the node weights—that is, in the context
of node-oriented graphs—Greedy1 has advantages.

• Cplex is able to obtain very good results for the smallest instances with 100 nodes.
However, for larger problem instances, it is not competitive anymore. Increasing the
computation time limit to 3600 seconds (Cplex-L) helps for some of the medium size
problem instances, where the results in comparison to Cplex improve considerably.
However, when large problem instances are concerned, Cplex-L is still not competitive.

• Ilp-Heuristic improves in all but two cases over Greedy2. However, this is at the cost
of a huge increase in computation time. Moreover, it improves in most cases (especially
for what concerns medium and large size instances) over Cplex and Cplex-L.

• Pbig is, overall, clearly the best-performing algorithm. It outperforms both greedy
heuristics in all cases. Moreover, it outperforms both CPLEX variants and Ilp-Heuristic
for all problem instances with more than 100 nodes. Moreover, in those cases where
Pbig is worse than Cplex, it is only slightly worse. This is with the exception of two
cases (node-oriented graphs on 100 nodes with ep ∈ {0.05, 0.15}) where the difference
is more pronounced.

• Concerning the computation time requirements, the two greedy variants are clearly
the fastest methods. However, even Pbig produces its best solutions in a very short
computation time.

Summarizing, we can state that the algorithm of choice for small problem instances, no
matter the graph density, is CPLEX, whereas for larger problem instances Pbig is clearly the
best-performing approach.

7 Conclusions and Future Work

This paper has dealt with an NP-hard problem in graphs, the so-called weighted indepen-
dent domination problem. We proposed the first integer linear programming model for this
problem, together with a heuristic that makes use of this model. Additionally, we presented
two different greedy heuristics, and a population-based iterated greedy algorithm which takes
profit from the better one of the two greedy heuristics. The results have shown that small
problem instances are best solved by applying a general-purpose integer linear programming
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solver. Medium and large scale instances, on the other side, are best solved by the population-
based iterated greedy approach.

In the near future we plan to investigate if there are better ways to take profit from the
developed ILP model in a heuristic way, for example, in the context of a large neighborhood
search algorithm or another hybrid algorithm called construct, merge, solve and adapt.
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