Skip to main content

A Genetic Algorithm for Multi-component Optimization Problems: The Case of the Travelling Thief Problem

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10197))

Abstract

Real-world problems are often composed of multiple interdependent components. In this case, benchmark problems that do not represent that interdependence are not a good choice to assess algorithm performance. In recent literature, a benchmark problem called Travelling Thief Problem (TTP) was proposed to better represent real-world multi-component problems. TTP is a combination of two well-known problems: 0-1 Knapsack Problem (KP) and the Travelling Salesman Problem (TSP). This paper presents a genetic algorithm-based optimization approach called Multi-Component Genetic Algorithm (MCGA) for solving TTP. It aims to solve the overall problem instead of each sub-component separately. Starting from a solution for the TSP component, obtained by the Chained Lin-Kernighan heuristic, the MCGA applies the evolutionary process (evaluation, selection, crossover, and mutation) iteratively using different basic operators for KP and TSP components. The MCGA was tested on some representative instances of TTP available in the literature. The comparisons show that MCGA obtains competitive solutions in 20 of the 24 TTP instances with 195 and 783 cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code can be found at https://github.com/DanielKneipp/GeneticAlgorithmTravelingThiefProblem.

References

  • Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Bonyadi, M.R., Michalewicz, Z., Przybyŏek, M.R., Wierzbicki, A.: Socially inspired algorithms for the travelling thief problem. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 421–428. ACM (2014)

    Google Scholar 

  • Bonyadi, M., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1037–1044, June 2013

    Google Scholar 

  • Davis, L.: Applying adaptive algorithms to epistatic domains. IJCAI 85, 162–164 (1985)

    Google Scholar 

  • Faulkner, H., Polyakovskiy, S., Schultz, T., Wagner, M.: Approximate approaches to the traveling thief problem. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 385–392. ACM (2015)

    Google Scholar 

  • Lourenço, N., Pereira, F.B., Costa, E.: An evolutionary approach to the full optimization of the traveling thief problem. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 34–45. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30698-8_3

    Chapter  Google Scholar 

  • Mei, Y., Li, X., Yao, X.: Improving efficiency of heuristics for the large scale traveling thief problem. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 631–643. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13563-2_53

    Google Scholar 

  • Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 477–484. ACM, New York (2014). http://doi.acm.org/10.1145/2576768.2598249

  • Wagner, M.: Stealing items more efficiently with ants: a swarm intelligence approach to the travelling thief problem. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 273–281. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44427-7_25

    Chapter  Google Scholar 

  • Watson, J., Ross, C., Eisele, V., Denton, J., Bins, J., Guerra, C., Whitley, D., Howe, A.: The traveling salesrep problem, edge assembly crossover, and 2-opt. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 823–832. Springer, Heidelberg (1998). doi:10.1007/BFb0056924

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Brazilian agencies CAPES, CNPq, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. S. Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vieira, D.K.S., Soares, G.L., Vasconcelos, J.A., Mendes, M.H.S. (2017). A Genetic Algorithm for Multi-component Optimization Problems: The Case of the Travelling Thief Problem. In: Hu, B., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2017. Lecture Notes in Computer Science(), vol 10197. Springer, Cham. https://doi.org/10.1007/978-3-319-55453-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55453-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55452-5

  • Online ISBN: 978-3-319-55453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics