Skip to main content

Lifted Auto-Context Forests for Brain Tumour Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10154))

Abstract

We revisit Auto-Context Forests for brain tumour segmentation in multi-channel magnetic resonance images, where semantic context is progressively built and refined via successive layers of Decision Forests (DFs). Specifically, we make the following contributions: (1) improved generalization via an efficient node-splitting criterion based on hold-out estimates, (2) increased compactness at a tree-level, thereby yielding shallow discriminative ensembles trained orders of magnitude faster, and (3) guided semantic bagging that exposes latent data-space semantics captured by forest pathways. The proposed framework is practical: the per-layer training is fast, modular and robust. It was a top performer in the MICCAI 2016 BRATS (Brain Tumour Segmentation) challenge, and this paper aims to discuss and provide details about the challenge entry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As an illustration on WT layers. The 4 (WT) clusters are obtained from (the single DF of) the first WT layer. The second and third WT layers each consist of 4 distinct (50-tree) DFs, each of which is trained on cluster-specific data. At test time, voxels \(\varvec{\mathrm {x}}\) pass through the first WT layer and are assigned a cluster \(k_{\varvec{\mathrm {x}}}\!\in \!\{1\cdots 4\}\). Then for the second and third layers, they are sent through the DF specific to the \(k_{\varvec{\mathrm {x}}}\)-th cluster. The same process is followed for TC and ET layers.

References

  1. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  2. Archambeau, C., Verleysen, M.: Robust Bayesian clustering. Neural Netw. 20(1), 129–138 (2007)

    Article  MATH  Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Cordier, N., Delingette, H., Ayache, N.: A patch-based approach for the segmentation of pathologies: application to glioma labelling. IEEE Trans. Med. Imaging 35(4), 1066–1076 (2015)

    Article  Google Scholar 

  5. Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)

    Article  Google Scholar 

  6. Geremia, E., Menze, B.H., Ayache, N.: Spatially adaptive random forests. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 1344–1347. IEEE (2013)

    Google Scholar 

  7. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  8. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). Elsevier

    Article  Google Scholar 

  9. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  10. Menze, B.H., Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15745-5_19

    Chapter  Google Scholar 

  11. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Cham (2016). doi:10.1007/978-3-319-30858-6_12

    Chapter  Google Scholar 

  12. Quinlan, J.R.: Simplifying decision trees. Int. J. Man. Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  13. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

    Google Scholar 

  14. Tu, Z.: Auto-context and its application to high-level vision tasks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

    Google Scholar 

  15. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1744–1757 (2010)

    Article  Google Scholar 

  16. Tustison, N., Gee, J.: N4ITK: Nicks N3 ITK implementation for MRI bias field correction. Insight J. (2009). http://hdl.handle.net/10380/3053

  17. Tustison, N.J., Shrinidhi, K., Wintermark, M., Durst, C.R., Kandel, B.M., Gee, J.C., Grossman, M.C., Avants, B.B.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2), 209–225 (2015)

    Article  Google Scholar 

  18. Tustison, N., Wintermark, M., Durst, C., Avants, B.: Ants and arboles. Multimodal Brain Tumor Segmentation, p. 47 (2013)

    Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. I-511. IEEE (2001)

    Google Scholar 

  20. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov Random Field model and the Expectation-Maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  21. Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Microsoft–Inria Joint Centre for partially funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loic Le Folgoc .

Editor information

Editors and Affiliations

A BRATS 2015 Dataset: Training IDs

A BRATS 2015 Dataset: Training IDs

For completeness, the identifiers of images from the BRATS 2015 dataset that were used for training (Sect. 6.1) are listed below.

2013_pat0001_1, 2013_pat0002_1, 2013_pat0003_1, 2013_pat0004_1, 2013_pat0005_1,

2013_pat0006_1, 2013_pat0007_1, 2013_pat0008_1, 2013_pat0009_1, 2013_pat0010_1,

2013_pat0011_1, 2013_pat0012_1, 2013_pat0013_1, 2013_pat0014_1, 2013_pat0015_1,

2013_pat0022_1, 2013_pat0024_1, 2013_pat0025_1, 2013_pat0026_1, 2013_pat0027_1,

tcia_pat105_0001, tcia_pat117_0001, tcia_pat124_0003, tcia_pat133_0001, tcia_pat149_0001,

tcia_pat153_0181, tcia_pat165_0001, tcia_pat170_0002, tcia_pat260_0129, tcia_pat260_0244,

tcia_pat260_0317, tcia_pat265_0001, tcia_pat290_0580, tcia_pat296_0001, tcia_pat300_0001,

tcia_pat314_0001, tcia_pat319_0001, tcia_pat370_0001, tcia_pat372_0001, tcia_pat375_0001,

tcia_pat377_0001, tcia_pat396_0139, tcia_pat396_0176, tcia_pat401_0001, tcia_pat430_0001,

tcia_pat491_0001, 2013_pat0001_1, 2013_pat0004_1, 2013_pat0006_1, 2013_pat0008_1,

2013_pat0011_1, 2013_pat0012_1, 2013_pat0013_1, 2013_pat0014_1, 2013_pat0015_1,

tcia_pat101_0001, tcia_pat109_0001, tcia_pat141_0001, tcia_pat241_0001, tcia_pat249_0001,

tcia_pat298_0001, tcia_pat307_0001, tcia_pat325_0001, tcia_pat346_0001, tcia_pat354_0001,

tcia_pat393_0001, tcia_pat402_0001, tcia_pat408_0001, tcia_pat413_0001, tcia_pat442_0001,

tcia_pat449_0001,

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Le Folgoc, L., Nori, A.V., Ancha, S., Criminisi, A. (2016). Lifted Auto-Context Forests for Brain Tumour Segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science(), vol 10154. Springer, Cham. https://doi.org/10.1007/978-3-319-55524-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55524-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55523-2

  • Online ISBN: 978-3-319-55524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics