Skip to main content

Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke

  • Conference paper
  • First Online:
Book cover Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2016)

Abstract

We propose an ensemble of deep neural networks for the two tasks of automated prognosis of post-treatment ischemic stroke, as imposed by the ISLES 2016 Challenge. For lesion outcome prediction, we employ an ensemble of three-dimensional multiscale residual U-Net and a fully convolutional network, trained using image patches. In order to handle class imbalance, we devise a multi-step training strategy. For clinical outcome prediction, we combine a convolutional neural network (CNN) and a logistic regression model. To overcome the small sample size and the need for whole brain image, we use the CNN trained using patches as a feature extractor and trained a shallow network based on the extracted features. Our ensemble approach demonstrated an appealing performance on both problems, and is ranked among the top entries in the Challenge.

Y. Choi, Y. Kwon and H. Lee—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISLES 2016 challenge. http://www.isles-challenge.org/

  2. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D u-net: learning dense volumetric segmentation from sparse annotation. CoRR abs/1606.06650 (2016). http://arxiv.org/abs/1606.06650

  4. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015). http://arxiv.org/abs/1511.07289

  5. Dieleman, S., Schlter, J., Raffel, C., Olson, E., Snderby, S.K., Nouri, D., Maturana, D., Thoma, M., Battenberg, E., Kelly, J., Fauw, J.D., Heilman, M., de Almeida, D.M., McFee, B., Weideman, H., Takcs, G., de Rivaz, P., Crall, J., Sanders, G., Rasul, K., Liu, C., French, G., Degrave, J.: Lasagne: first release. http://dx.doi.org/10.5281/zenodo.27878

  6. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout networks. ICML 3(28), 1319–1327 (2013)

    Google Scholar 

  7. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). Elsevier

    Article  Google Scholar 

  8. Havaei, M., Guizard, N., Larochelle, H., Jodoin, P.: Deep learning trends for focal brain pathology segmentation in MRI. CoRR abs/1607.05258 (2016). http://arxiv.org/abs/1607.05258

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). doi:10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167

  13. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. CoRR abs/1603.05959 (2016). http://arxiv.org/abs/1603.05959

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  15. Lai, M.: Deep learning for medical image segmentation. CoRR abs/1505.02000 (2015). http://arxiv.org/abs/1505.02000

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

    Google Scholar 

  19. Saver, J.L., Goyal, M., van der Lugt, A., Menon, B.K., Majoie, C.B., Dippel, D.W., Campbell, B.C., Nogueira, R.G., Demchuk, A.M., Tomasello, A., et al.: Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. Jama 316(12), 1279–1288 (2016)

    Article  Google Scholar 

  20. Shah, A., Kadam, E., Shah, H., Shinde, S.: Deep residual networks with exponential linear unit. In: Proceedings of the Third International Symposium on Computer Vision and the Internet. ACM (2016)

    Google Scholar 

  21. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP, No. 2016012002). Joong-Ho Won’s research was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP, Nos. 2013R1A1A1057949 and 2014R1A4A1007895).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Ho Won .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Choi, Y., Kwon, Y., Lee, H., Kim, B.J., Paik, M.C., Won, JH. (2016). Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science(), vol 10154. Springer, Cham. https://doi.org/10.1007/978-3-319-55524-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55524-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55523-2

  • Online ISBN: 978-3-319-55524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics