
Similarity Search Combining Query Relaxation and

Diversification

Ruoxi Shi, Hongzhi Wang, Tao Wang, Yutai Hou,

Yiwen Tang, Jianzhong Li, Hong Gao

Harbin Institute of Technology, Harbin, China
{shiruoxi,wangzh,lijzh,honggao}@hit.edu.cn yt6789299@163.com

{atma.hou,isabeltang147}@gmail.com

Abstract. We study the similarity search problem which aims to find the similar
query results according to a set of given data and a query string. To balance the
result number and result quality, we combine query result diversity with query
relaxation. Relaxation guarantees the number of the query results, returning
more relevant elements to the query if the results are too few, while the diver-
sity tries to reduce the similarity among the returned results. By making a
trade-off of similarity and diversity, we improve the user experience. To
achieve this goal, we define a novel goal function combining similarity and di-
versity. Aiming at this goal, we propose three algorithms. Among them, algo-

rithms genGreedy and genCluster perform relaxation first and select part of the

candidates to diversify. The third algorithm CB2S splits the dataset into smaller

pieces using the clustering algorithm of k-means and processes queries in sev-
eral small sets to retrieve more diverse results. The balance of similarity and
diversity is determined through setting a threshold, which has a default value
and can be adjusted according to users’ preference. The performance and effi-
ciency of our system are demonstrated through extensive experiments based
on various datasets.

1 Introduction

Similarity search that finds objects with distance larger than a given similarity thresh-
old or within a certain distance threshold with the query in a dataset has a wide range
of applications, such as web page detection, entity linking and protein identifica-
tion[13][14][15].

Recently, the quality of similarity search results has attracted more attention. The
result quality is often measured in two dimensions.

One is the number of results. Too few results provide insufficient results to the user,
while too many results are inefficient to display and impossible for users to explore.
When too few results are returned, the query has to be relaxed to obtain more results.
For example, wrong or fuzzy input may cause few searching results if the keyword is
“Briatney”. The searching engine will obtain more results by correcting the keyword
to “Britney”, which is the name of a famous singer.

The other is the diversification of results, which is the quantitative description of
the variety of elements in the result set. A good search engine attempts to provide
various kinds of information within limited number of results. In web search engines
and recommendation systems, query result diversification helps counteract the over-
specialization problem in which the retrieved results are too homogeneous to meet
users' needs [16][17][3].

During the similarity search process, these two dimensions are correlative and
should be balanced. We use an example to illustrate this point. Consider the scenario

mailto:isabeltang147%7d@gmail.com

of searching for commodities in an e-commerce site. The best search result is to show
users abundant but not redundant commodities. These commodities meet the require-
ment of user input and meanwhile, different enough to one another. Similarly, such
technique can also be applied to information retrieval, image search and some other
areas [28] [29].

Such requirements bring challenges to query processing to obtain high-quality re-
sults. To find the most diverse elements has been proved to be an NP-complete prob-
lem [20], and one optimal solution leads to incredible time and space cost, especially
on massive and complex datasets.

Even though many query relaxation and result diversification approaches have been
proposed, they fail to balance result number and diversification. Relaxation tech-
niques in [21] [22] only perform relaxation when the query result is empty, and the
result number is uncontrollable. Moreover, the similarity among the results gets high
due to the relaxation. Algorithms in [3] [4] [5] return 𝑘 diverse neighbors, and most
of them have a two-step of candidate-filter selection based on greedy selection. Due
to the facts that the optimality of greedy selection is not guaranteed, and the result
quality of candidate-filter algorithms is greatly affected by the quality of the candidate
set, a bad candidate set may lead to worse results.

In this paper, we attempt to obtain a proper number of results with high diversity.
We control the result number within a range [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥] instead of a fixed integer 𝑘
in previous studies [7] [19]. In practice, the lower bound is often given by the user,
while the upper bound is limited to the result display interface or the user’s ability of
exploring the result. With the consideration of relaxation, we define the problem with
the measure combining diversity and similarity and develop various algorithms based
on this measure.

For different scenarios, we develop three algorithms to solve this problem. gen-

Greedy is based on greedy selection strategy, with high efficiency, and is more appli-
cable for a frequently changing dataset. Based on multiple sequence alignment,
genCluster costs more time than genGreedy, but more stable. The third algorithm

CB2S is based on cluster analysis and machine learning. It is designed to achieve high
efficiency aiming at complex and massive datasets.

The contributions of this paper are as follows.

─ We study efficient query processing with the consideration of both result number
and diversification. As far as we know, this is the first paper considering both of
these dimensions.

─ To achieve the goal, we design a novel measure of query result quality combining
similarity and diversity. We develop three efficient algorithms for different scenari-
os.

─ For efficient query processing, we develop a string vectorization strategy and itera-
tive query processing strategy to speed up the search process.

─ We tested our approaches on various real datasets. Extensive experimental results
show that when returning similar diversity with existing algorithms, our approach
provides a proper number of results. The runtime comparison shows that our ap-
proaches are more efficient.

The rest of the paper is organized as follows. Problem definition is discussed in
Section 2. Section 3, 4 and 5 describes our three searching approaches in detail. Our
experimental results are presented in Section 6, and we conclude our paper in Section
7.

2 Problem definition

In this section, we define the problem by defining the quality of query results integrat-
ing similarity between query and result, the number of results and diversification. For
simplification, we focus on string and use edit distance [23] as the similarity measure.
Our approaches can also be adapted to other applications such as semantic or image
similarity search with minor changes on the search criteria.

We denote the dataset as 𝐷𝑆 = {s1, s2, … … , sn }, the query as 𝑞, the given thresh-
old of distance as and the given result number range [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥].
Definition 1. Given a query 𝑞 and a result set 𝑆, the similarity between 𝑞 an 𝑆 is de-
fined as the average distance between 𝑞 and all elements in 𝑆, i.e.

𝑎𝑟𝑔𝑆𝑖𝑚(𝑆, 𝑞) =
1

|𝑆|
 ∑ 𝐷𝑖𝑠(𝑞, 𝑠𝑖)𝑠𝑖∈𝑆

where 𝐷𝑖𝑠(𝑞, 𝑠𝑖) is the distance between 𝑞 and 𝑠𝑖 .
In this paper, we adopt content-based diversity based on edit distance, since the

other two kinds (intent based diversity and novelty based diversity) are mainly used
for semantic analysis [2]. The definition is as follows.
Definition 2. Given a result set 𝑆, the diversification of 𝑆 is defined as follows.

𝑎𝑟𝑔𝐷𝑖𝑣(𝑆, 𝑞) =
2

𝑘(𝑘−1)
∑ 𝐷𝑖𝑠(𝑠𝑖 , 𝑠𝑗)𝑠𝑖,𝑠𝑗∈𝑆

Intuitively, the goal of query processing is to minimize the similarity distance and
maximize the diversity. However, these two dimensions are correlative. To balance
these two dimensions, we use a coefficient λ and define the objective function of the
query process as follows.
Definition 3. Given a trade-off parameter of similarity and diversity, coefficient λ
(λ∈[0,1]), the objective function 𝐹(𝑆, 𝑞) for a result set S is as follows.

𝐹(𝑆, 𝑞) = λ 𝑎𝑟𝑔𝐷𝑖𝑣(𝑆, 𝑞) + (1 − λ) (−𝑎𝑟𝑔𝑆𝑖𝑚(𝑆, 𝑞))
In this definition, the trade-off parameter λ can be determined by users. Hence the

inner structure of returned set is flexible, i.e. a small λ leads to more relevant results
while a large λ leads to more diverse results. Also, this parameter can be also decided
by analyzing various datasets through model building or sampling like [20].

We chose the form 𝐹(𝑆, 𝑞) in three reasons. First, 𝐹(𝑆, 𝑞) is an efficient and effec-
tive assessment since it combines similarity and diversity into one expression and
uses an adjustable parameter to balance these two dimensions. Furthermore, 𝐹(𝑆, 𝑞)
increases with the growth of 𝑎𝑟𝑔𝐷𝑖𝑣(𝑆, 𝑞) and drops with the growth
of 𝑎𝑟𝑔𝑆𝑖𝑚(𝑆, 𝑞), which excellently reflects our aim at finding the most diverse re-
sults which are also similar to query 𝑞. Finally, this formula is simple and the compu-
tation cost is small.

According to this definition, the query processing algorithm works for a given que-
ry 𝑞 and range[𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥], to retrieve a result set S with |S|= 𝑘 ∈ [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥] and
maximize 𝐹(𝑆, 𝑞). According to [20], even when λ=0, this problem is NP-Complete.
Thus, we attempt to design efficient heuristic algorithms in the following sections.

3 genGreedy

Intuitively, the proposed problem can be solved by two steps, generating sufficient
candidates through relaxation and greedy selection. Based on this framework, we
develop the query processing algorithm genGreedy.

This algorithm has two phases, candidate generation and diversification filter.

3.1 Candidate Generation

Candidate generation phase first generates k results with the highest relevance with
the query , which will be used for further selection. If the result number of an accu-
rate query is smaller than k, relaxation is performed.

To ensure the number of final results, k should be large enough, while to achieve
high efficiency in the diversification filter phase and select the results similar enough
to q, k should not be too large. Hence in the relaxing process we make k dependent on
𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥, k∈ [(λ + 1)𝑘𝑚𝑖𝑛 , (λ + 1)𝑘𝑚𝑎𝑥] , λ∈[0,1], as mentioned in section 2.
Thus, [k, 2k] strings are retrieved in the phase of relaxation, and in selecting phase, we
pick 1/(λ + 1) of the candidates since we enlarge the number constraint by λ + 1 in
relaxation.

To obtain the results which are the most similar to q, we develop an iterative algo-
rithm for candidate generation phase. In this algorithm, the query is relaxed iteratively
from the one most similar string to q to those different ones until total k results are
obtained with the relaxed queries.

That is, if insufficient results are obtained through q in the first round, then a great-
er threshold is used for query relaxation to retrieve results within difference with q.
Initially, is set to 1 to retrieve the results within distance smaller than 1 with q. If
such relaxation does not return sufficient results, is relaxed to a larger value.

The pseudo code is shown in Algorithm 1. In this algorithm, for efficiency issues q-
gram and inverted index [24] are adopted. We first initialize 𝑚𝑖𝑛_𝑐𝑜𝑚 with 0 and the
output set 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 with ∅ (Line 1-2). Line 3-12 describe the iterative process. In
Line 3, we start the iteration until the result number equals or exceeds (𝜆 + 1) ∗ 𝑘𝑚𝑖𝑛 .
During each iteration, we turn to next string if the current string s is already in
𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡(Line 5-6). In each iteration, we set the value of 𝑚𝑖𝑛_𝑐𝑜𝑚, which is the
minimum number of same grams that two strings should contain. Considering that the
similarity of each result cannot be guaranteed to be within if only one step of q-
gram approach is used. Hence, we add a verification step in Line 8-9. The results that
pass verification are added into the result set in Line 9. In Line 10, we check the num-
ber of results. The program jumps out the loop and returns set 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 (Line 13) if
 |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 | = (𝜆 + 1) ∗ 𝑘𝑚𝑎𝑥 is satisfied. If there are insufficient results, we en-
large (Line 12) to perform the next round of searching.

Note that the computation of set similarity for the q-gram set of each string is inef-
ficient, we involve inverted list to accelerate the process. The details will be discussed
in Section 6.

Algorithm 1: Relaxation

Input:
𝑞: query string; 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥: minimum and maximum bound

λ: tradeoff parameter; : threshold of edit distance
Output:

𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡: set selected from dataset

1. 𝑚𝑖𝑛_𝑐𝑜𝑚 ← 0

2. |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡| ← ∅

3. 𝐰𝐡𝐢𝐥𝐞 (|𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡| < (𝜆 + 1) ∗ 𝑘𝑚𝑖𝑛) 𝐝𝐨

4. 𝐟𝐨𝐫 (each string 𝑠 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡) 𝐝𝐨

5. 𝐢𝐟 𝑠 in 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡

6. continue

7. 𝑚𝑖𝑛_𝑐𝑜𝑚 ← 𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ + 2 − 1 − ∗ 2

8. 𝐢𝐟 |𝑠. grams ∩ 𝑞. grams| > 𝑚𝑖𝑛_𝑐𝑜𝑚 && Dis(𝑞, 𝑠) <

9. 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡. 𝑎𝑑𝑑(𝑠)

10. 𝐢𝐟 |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 | = (𝜆 + 1) ∗ 𝑘𝑚𝑎𝑥

11. 𝐛𝐫𝐞𝐚𝐤

12. ← + 1

13. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡

The complexity of Algorithm 1 is 𝑂(𝑘𝑚𝑖𝑛𝑁), where 𝑘𝑚𝑖𝑛 is the minimum bound of
the result number, and 𝑁 is the size of dataset 𝐷𝑆.

3.2 Diversification Filter

In the diversification filter phase, we select top (1/λ+1)∗ |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡| strings that
make the greatest contribution to result diversity. Since the diversity of a set is meas-
ured through 𝑎𝑟𝑔𝐷𝑖𝑣 in Section 2, we define the contribution that a string t makes to
the final result set 𝑆, denoted by 𝐷𝐷𝑡(𝑆), as follows.
Definition 4. Given two strings 𝑠𝑖 and 𝑠𝑗 in dataset 𝑆, the edit distance between them

is 𝐷𝑖𝑠(𝑠𝑖 , 𝑠𝑗). The contribution is computed as the sum of each distance between t and

any other string s, which is denoted as 𝐷𝐷𝑡(𝑆) = ∑ 𝐷𝑖𝑠(𝑠, 𝑡).𝑛
𝑠∈𝑆

We accelerate the selection by pruning the strings that are not diverse enough ac-

cording to a prune function 𝐹(𝜎, 𝛺) = 𝛺
1

𝜎∗|𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡|
 ∑ 𝐷𝑖𝑠(𝑠, 𝑡)|𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡|

𝑠∈𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡,𝑡∈𝑠𝑎𝑚𝑆𝑒𝑡

where 𝜎 and 𝛺 are the parameters of pruning, 𝜎 ∈ (0,0.5) with default value of
0.25, 𝛺 ∈ (0.5,1) with default value of 0.75. The sample set of 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 is 𝑠𝑎𝑚𝑆𝑒𝑡
with size of 𝜎 ∗ |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡|. 𝜎 decides how many elements 𝑠𝑎𝑚𝑆𝑒𝑡 contains. In
order to guarantee the number of query results, we use parameter 𝛺 to control pruning
number. And 𝛺 can be adjusted by users according to the preferences. Higher 𝜎 and 𝛺
increase the accuracy but decrease the efficiency of algorithm, and vice versa.

Algorithm 2: greedy

Input:
 𝐸𝐷_𝑚𝑎𝑡𝑟𝑖𝑥: two-dimensional matrix string edit distances between each pair of strings

𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡: strings generated by Algorithm Relaxation ; λ: tradeoff parameter
Output:

S: final result set

1. 𝐟𝐨𝐫 each candidate 𝑐𝑖 in 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 𝐝𝐨

2. 𝐷𝐷c𝑖
(𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡) ← ∑ 𝐸𝐷_𝑚𝑎𝑡𝑟𝑖𝑥𝑖𝑗

𝑛

𝑗=0,𝑗≠𝑖

3. calculate 𝐹(𝜎, 𝛺)

4. 𝐟𝐨𝐫 each candidate 𝑐𝑖 in 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 𝐝𝐨

5. 𝐢𝐟 𝐷𝐷c𝑖 (𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡) < 𝐹(𝜎, 𝛺)

6. 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡. remove(c𝑖)

7. 𝑆 ← mergeSort(𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡)

8. return 𝑆

The pseudo code is shown in Algorithm 2. Initially, for each candidate c𝑖 in
𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡, we calculate how much contribution c𝑖 makes for 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 by
𝐷𝐷c𝑖 (𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡) in Line 1 and 2. In Line 3, we calculate 𝐹(𝜎, 𝛺) for pruning in Line
5. Candidates with 𝐷𝐷c𝑖 (𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡) lower than 𝐹(𝜎, 𝛺) are considered to have a too
low diversity and removed from 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡(Line 6). After this pruning, we sort the
candidates by 𝐷𝐷𝑛𝑜𝑑𝑒(𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡) and return top (1/λ+1)∗ |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡| results as 𝑆
(Line 7 and 8).

The time complexity of Algorithm 2 is 𝑂(𝑘 𝑙𝑜𝑔 𝑘), in which 𝑘 = |𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡|.
Since the cost of merge sort is 𝑂(𝑘 𝑙𝑜𝑔 𝑘) and that of one loop is 𝑂(𝑘), the total com-
plexity of genGreedy is 𝑂(𝑘𝑁 + 𝑘 𝑙𝑜𝑔 𝑘).

This algorithm is simple and efficient without heavy preprocessing cost. Thus, it is
suitable for scenarios with frequently changing datasets. As shown in Section 6, this
algorithm could generate a good result set efficiently in most conditions, especially
when dealing with complex and massive datasets. However, this method is not stable
when datasets are too small. To remedy the shortage, we present a more stable ap-
proach genCluster in the next section.

4 genCluster

genCluster is presented to solve the unstable problem of genGreedy. As a trade-off, it

relatively costs more time than genGreedy. Hence, it is more applicable for scenarios
when the result quality requirement is more important than query runtime restriction.

To make the algorithm more stable, we cluster the candidates in 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 based
on multiple sequence alignment. Such idea is inspired by the method of multiple se-
quence alignment in bioinformatics [25], which finds genetic relation among series of
DNA or proteins. We apply such idea to find similarity connection among strings.
First of all, we make pairwise alignment to create a distance matrix. Thereafter, a
guide tree is built by applying clustering algorithms. Then a motif string is created by
a method of scoring. Finally, strings far away from the motif in edit distance are

picked out to maximize the diversity. This algorithm can also be divided into two
parts, relaxing (described in Section 3 hence we will not repeat here) and clustering.

4.1 Definitions

Before discussing the specific steps of this algorithm, we first introduce two concepts,
substitution matrix and score function. After accomplishing multiple sequence align-
ment on strings, in order to obtain the motif sequence, which is considered to be the
center to have the closest edit distance to all sequences, we define substitution matrix
as follows.
Definition 5. Given a group of m sequences, α = {𝐴1, 𝐴2, . . . , 𝐴𝑠, . . . , 𝐴𝑚}. A substi-
tution matrix is a group of sequences α′ = {𝐴1

′ , 𝐴2
′ , . . . , 𝐴𝑠

′ , . . . , 𝐴𝑚
′ } generated by

changing 𝐴𝑠 to 𝐴𝑠
′ by enlarging every 𝐴𝑠 in α to the same length with place holders

filling in the unmatched blanks. That is to say, all sequences in the matrix have a same
length.

For each sequence 𝐴𝑠 which has not been enlarged in α, we fill its i-th character in
in 𝐴𝑠

′ if it matches the i-th character in the enlarged sequences in α′. Otherwise, we
fill this i-th position in 𝐴𝑠

′ with a place holder. Figure 1 shows the process of trans-
formation. The left figure shows the original α with sequences of various lengths, and
the right one shows α′, in which sequences are extended to the same length.

Fig. 1. Substitute Matrix Transformation

The method of obtaining the substitution matrix is as follows.
First, each pair of leaf nodes is compared and scored using a scoring matrix. Global

optimization of dynamic programming algorithm is used in this process [30]. As for
the comparison among clusters, actually, it is the comparison among groups of the
multiple sequences which have already been compared. Until all sequences are pro-
cessed, we obtain the substitution as a result.

To obtain the motif sequence for further selection, we need to score the sequences
in the substitute matrix through a score function. This function computes scores of
each kind of characters in each column of substitute matrix.
Definition 6. Score function, also called penalty function, is used to score the se-
quence alignment and generate the substitute matrix α′ of sequences α and then, cre-
ate motif according to α′. The basis of score function is the scoring matrix, usually
obtained by hamming distance. Higher mark represents a higher similarity among
sequences.

dH(a, b) = {
0, 𝑖𝑓 𝑎 = 𝑏
1, 𝑒𝑙𝑠𝑒

In addition, one of the popular methods of computing scores is called SP (sum of
pairs) standard. Take the following sequences as an example.

C1 = − − −gttag

C2 = acag − − − g
C3 = −cagttag

If the bit of one sequence matches with the other one, it is marked 1, otherwise
marked 0. Its mark is deducted by 1 during the inserting process. Considering the
example above, we can easily find that the score of comparison between C1 and C2 is
-4. Then, comparison of C1 and C3 is scored 3, and that of C2 and C3 is 0. Thus, the
total score of the multiple sequences is -4+3+0=-1.

Hereby, we select the character with the highest score to fill in the corresponding
position of the motif sequence. That is to say, we find characters which appear most
frequently in every column to create the motif.

Generally, creating motif in this method makes a good result, except some undesir-
able situation when the selected sequences are far away from the motif sequence but
close to each other, which negatively affects the diversity. Hence, we use 𝐹(𝑆, 𝑞) to
measure the result quality. When meeting with unsatisfying results, technique men-
tioned in [18] is applied, where several profiles sequences or sub-sequences are used
to create a more accurate motif with a cost of longer runtime. Fortunately, such spe-
cial situations seldom happen in our experiment. In fact, according to triangle inequal-
ity, i.e. the sum of the length of two edges is larger than the length of the third in a
triangle, two sequences cannot be too similar if they are both far away from the motif.

4.2 Description of Cluster

In this section, we propose the specific cluster algorithm to solve the unstable prob-
lem of genGreedy. This algorithm tries to create a motif sequence of 𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 and
select results with the farthest distance to the motif for diversification.

We first treat each string as a set among which the branch length is initialized by

𝐸𝐷_𝑚𝑎𝑡𝑟𝑖𝑥. After that, we perform search for each set in SET to find two sets 𝑠𝑒𝑡𝑗 and
𝑠𝑒𝑡𝑘 that has the minimum branch length. These two sets are merged into 𝑠𝑒𝑡𝑧, and
the branch lengths are updated by average distance from 𝑠𝑒𝑡𝑗 and 𝑠𝑒𝑡𝑘 to the other
sets. Hence, a phylogenetic tree is built, in which closer nodes are more similar to

Algorithm 3: cluster

Input:
 𝐸𝐷_𝑚𝑎𝑡𝑟𝑖𝑥: two-dimensional matrix string edit distances between each pair of strings

𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡: strings generated by Algorithm Relaxation; λ: tradeoff parameter
Output:

S: final result set

1. set initialization (𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡)

2. 𝐟𝐨𝐫 each set in Set 𝐝𝐨

3. branchLen(𝑠𝑒𝑡 𝐴, 𝑠𝑒𝑡 𝐵) ← Dis(𝐴, 𝐵)

4. 𝐰𝐡𝐢𝐥𝐞 (|set|! = 1) 𝐝𝐨

5. Find 𝑠𝑒𝑡𝑗 and 𝑠𝑒𝑡𝑘 with min length of branchLen

6. conbine 𝑠𝑒𝑡𝑗 , 𝑠𝑒𝑡𝑘 to new 𝑠𝑒𝑡𝑧

7. 𝐟𝐨𝐫 each 𝑠𝑒𝑡𝑡 in Set do

8. branchLen(𝑠𝑒𝑡𝑧, 𝑠𝑒𝑡𝑡) ←
1

2
 (Dis(𝑠𝑒𝑡𝑡, 𝑠𝑒𝑡𝑗) + Dis(𝑠𝑒𝑡𝑡, 𝑠𝑒𝑡𝑘))

9. 𝑆𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥 ← treeSetTranstoSubstituteMatrix

10. motif ← score(Submatrix)

11. 𝐟𝐨𝐫 each 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖 in 𝑆𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥 do

12. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖 . 𝑑𝑖𝑠 ← 𝐷𝑖𝑠 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖 , 𝑚𝑜𝑡𝑖𝑓)

13. 𝑆 ← 𝑀𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖 . 𝑑𝑖𝑠)

14. Return 𝑆

each other. From the leaves, we start to compare the nodes. For each time, we choose
two closest nodes to be added to the substitution matrix and build up this matrix by
iterative processing. After that, by applying the score function, we obtain the motif
sequence, which is considered to be the center with the closest edit distance to all
sequences. After that, we sort the sequences by the distance to motif and return
1/(1+λ)*| rlxResult| items as the final result.

In Algorithm 3, we initialize the branch lengths among sets by edit distance among
strings (Line 1 to Line 3). Line 4-Line 8 are the iterative process of building a phylo-
genetic tree. When two sets are merged into one, we update the branch lengths of the

new set in Line 8 by computing the average of two old sets,
1

2
 (Dis(𝑠𝑒𝑡𝑡 , 𝑠𝑒𝑡𝑗) +

Dis(𝑠𝑒𝑡𝑡 , 𝑠𝑒𝑡𝑘). In Line 9, we transfer our tree into a substitution matrix by multiple
sequence alignment and use the score function to find the motif (Line 10). Thereafter,
we calculate the distance among sequences to motif (Line 12) and return those with
the farthest distance (Line 13 and 14). In this algorithm, the time complexities of
‘while’ loop, merge sort and other lines are O(𝑘2 𝑙𝑜𝑔 𝑘), O(𝑘 𝑙𝑜𝑔 𝑘) and O(𝑘), respec-
tively. Thus, the total time complexity is O(𝑘2 𝑙𝑜𝑔 𝑘), in which 𝑘 is the size of
𝑟𝑙𝑥𝑅𝑒𝑠𝑢𝑙𝑡 .

5 CB2S

genGreedy and genCluster perform well in some cases. However, they still have dis-

advantages. genGreedy is unstable for greedy selection, and genCluster costs more

time. Motivated by this, we develop a novel algorithm CB2S (Cluster-Based String
Search), which is stable and meanwhile, efficient. This method combines query relax-
ation with diversification in one iterative process instead of two separate steps of
picking candidates and filtering. Therefore, it eliminates the exceptional situations
that bad candidates lead to terrible results. Meanwhile, one iterative process helps to
reduce algorithm runtime. Hence, the efficiency of CB2S outperforms these algo-
rithms and is high especially when meeting with massive datasets.

Basically, this algorithm reduces the searching space by cluster analysis in ad-
vance and then searches several clusters to retrieve results that fit our requirement.
This method involves a complex pretreatment process (described in Section 5.1) of
cluster analysis based on 𝑘𝑚𝑒𝑎𝑛𝑠 algorithm [26]. In Section 5.2, we discuss the de-
tails of the searching process based on 𝑘𝑛𝑛 algorithm [27], which is used for string
classification in our approach. Given some clusters of classified strings and an unclas-
sified string 𝑡, KNN tells which cluster 𝑡 belongs to according to a training set by
uniform random sampling from classified strings. For efficiency issues of clustering
and classification, strings are vectored before searching.

During the whole process, we first separate dataset into clusters, and treat the
sampled data of these clusters as the training set. Given a query 𝑞, the training set and
KNN algorithm vaguely classify 𝑞 to one of the clusters. This cluster is considered as
the search center. The search starts from the center cluster, and the search space
spreads to neighbor clusters to diversify the results. This process iterates until we
obtain enough number of results.

5.1 Data pretreatment

The pretreatment process of CB2S aims at splitting a large dataset into small clusters
and generating a complete graph by treating clusters as vertexes and distances among
clusters as edges. The process is divided into the following steps. First, strings are
changed to vectors. This step is necessary since using feature vectors to conduct clus-
ter and classification work is more efficient [9]. Second, the dataset is separated into
clusters by 𝑘𝑚𝑒𝑎𝑛𝑠 algorithm. In this step, similar strings are clustered in the same
cluster, and strings in different clusters are less alike. After that, we generate the com-
plete graph of clusters by calculating the distance from the center of one cluster to the
others’. Strings are more similar if their clusters are near, vice versa. The details of
these steps are shown below.

Vectorization.
In the area of machine learning, text is transferred into feature vectors to perform text
mining [9]. In our work, we transfer strings into vectors and classify strings by cluster
analysis on vectors. Since the representation of a string has a strong impact on the
accuracy of a learning system, various techniques are proposed to fit the need of vari-
ous systems [10] [11]. Word stems work well on strings. Hence, similar strings have a
closer space vector. For example, the distance between the vector of “computer” and
“computing” should be smaller than that between “computer” and “apple” because
“computer” and “computing” are mapped in the same stem. In our paper, we use the
method of vectorization presented in [9] and feature selection technique proposed in
[8]. Before this process, the long strings are segmented and some end words or stop
words such as “the” and “a” are removed.
Establishment of clusters.
We cut the whole searching space into smaller pieces and search in only small clusters
to reduce the cost. Given the feature vectors of long strings obtained by vectorization,
we use algorithm K-means to cluster them into M categories. In our approach, the
number of categories (M) is determined according to the sizes of datasets. The size of
each cluster is controlled to no more than 64MB, for it is the default capacity of block
storage in a distributed system, considering a future optimizing work of running our
algorithm on distributed platforms. We create a distance matrix by calculating the
distances among the cluster centers, i.e., the median of the set. Through the process,
we obtain the complete graph of M clusters.

5.2 The searching process

During search, we first vaguely determine which category the query input q belongs
to, and this category will be considered as the center set for further searching. During
this process of classification, we use KNN algorithm for it does not need any evalua-
tion parameters [27]. After that, the distance matrix among clusters is checked and
sorted. A set list is returned according to the ascending order of distances between
center set and the other clusters.

After determining the center set, the iterative process of retrieving enough items is
shown in Figure 2. We first focus the searching range on center set, adding the string
whose vector is the closest to that of query q. This process continues until the objec-
tive function 𝐹(𝑆, 𝑞) starts to decrease, which means that the quality of result set
starts to drop. Hence, we need to switch to next category to get items with better qual-
ity. The iteration ends when the number of results satisfies user’s requirement.

Fig. 2. Searching Process of CB2S

The pseudo code of the algorithm is shown in Algorithm 4. We search at least
(1 − 𝜆)𝑘𝑚𝑖𝑛 strings for similarity and at least 𝜆𝑘𝑚𝑖𝑛 strings for diversity. We first use
KNN algorithm to decide the center set (Line 1). In Line 2 we check the distances
among sets and prune sets that are far from the center set. From Line 3-13, we search
iteratively until |S| < 𝑘𝑚𝑖𝑛. For each round, we add the closest string to S and check

the change of 𝐹(𝑞, 𝑆)(Line 7). When 𝐹(𝑞, 𝑆) decreases, or when |𝑆| > (1 − 𝜆)𝑘𝑚𝑖𝑛 is
satisfied, which means that we already have enough similar strings, the searching
space switches to the next cluster (Line 9). We check the number of results and jump
out the loop when |𝑆| >= 𝑘𝑚𝑎𝑥 to finish searching. Otherwise, we update
𝐹(𝑞, 𝑆) and continue the search processing.

We apply pruning technique when determining the search space of CB2S algo-
rithm. The first step utilizes 𝑘NN algorithm to find the set of search center, to which
the string of query input is vaguely classified. To reduce the search space, we abandon
some of the separated sets with the lowest possibility to contain the final search result.
Consider that we have M sets in total, a parameter 𝜎 is used to prune (1 − 𝜎)*M sets
that have the farthest distance to the center set. This question is converted into SSSP
(single source shortest path) problem which picks 𝜎*M closest sets to the center set. 𝜎
is changeable according to various datasets and the user input of 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑖𝑛. No
matter how large a dataset is, the real search space includes only several clusters. For
a large dataset, we set a small 𝜎. And we set a relatively large one for small datasets
to ensure enough but not redundant search space.

Algorithm 4: CB2S

Input:
q:query string; 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥:minimum and maximum bound; λ: tradeoff parameter

: threshold of edit distance; 𝑉𝑒𝑐_𝐷𝑆: vector set of Dataset DS
Output:

S: final result set

1. centerSet ← KNN(𝑞, 𝑉𝑒𝑐_𝐷𝑆)

2. setList ← Prune(centerSet)

3. 𝐰𝐡𝐢𝐥𝐞(|𝑆| < 𝑘𝑚𝑖𝑛) 𝐝𝐨

4. 𝐟𝐨𝐫 (𝑠𝑒𝑡 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑆𝑒𝑡; 𝑠𝑒𝑡𝑛𝑢𝑚 < 𝑠𝑒𝑡𝐿𝑖𝑠𝑡. 𝑙𝑒𝑛𝑔𝑡ℎ;) 𝐝𝐨

5. add closest string 𝑠 to 𝑆

6. delete 𝑠 from set

7. 𝑡𝑒𝑚𝑝 ← update (𝐹(𝑞, 𝑆))

8. 𝐢𝐟 𝑡𝑒𝑚𝑝 < 𝐹(𝑞, 𝑆)| |𝑆| > (1 − 𝜆)𝑘𝑚𝑖𝑛

9. set. switch

10. 𝐞𝐥𝐬𝐞 𝐢𝐟 |𝑆| >= 𝑘𝑚𝑎𝑥

11. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆

12. 𝐞𝐥𝐬𝐞

13. 𝐹(𝑞, 𝑆) ← 𝑡𝑒𝑚𝑝

Suppose that we have N strings in the whole dataset DS, and DS is cut into M small
categories. The training set used to decide the center set is 𝑁′ which is much smaller
than N. (In our work, we sample 5% content of each dataset randomly to do training
task.) Thus The time complexity of CB2S is 𝑂(𝑘𝑀 + 𝑁′), in which 𝑘 is the number
of searching results. After applying the technique of pruning, the complexity is re-
duced to 𝑂(𝜎𝑘𝑀 + 𝑁′), where σ < 1 and is a changeable threshold of pruning.

6 Experiments

In this section we evaluate the performance of our methods of optimizing the search
results, and compare them with some other methods from previous papers [12].

6.1 Setup

We use four datasets from different domains, including Computer Conference, In-

formation of Mammal, Protein and Random Sequence. Conference set is ex-
tracted from DBLP, containing names of journals and conferences respectively. The
datasets Protein and Mammal are available on UNIPROT. Finally, the Random

Sequence is generated by ourselves, containing strings made of random combinations
of letters specially used to evaluate the runtime of the algorithms. The specific statis-
tics of all datasets are summarized in Table 1. The statistics show that the strings in
Mammal and Conference are shorter than the other two datasets, usually with

lengths of 50 to 100 characters. On the contrary, Protein and Random consist of
relatively long strings.

Table 1. Dataset Characteristics

Dataset Number of items Max length Average length
Conference 2199 125 89
Protein 10000 2163 465
Mammal 50000 142 73
Random 150194 572 277

All of our experiments are performed on a PC with quad-core, 64-bit, 1.7 GHz
CPU and 4 GB memory. Apart from the preprocessing of CB2S which is written in
Python (containing transferring strings to vectors and classification of the query in-
put), the other parts of this system are implemented with c++. The operating system is
Windows 7. Comparisons were made among our methods and two previously pre-
sented algorithms dealing with a similar problem. Performances of these five algo-
rithms are measured through the value of 𝐹(𝑆, 𝑞) and the number of results. Efficien-
cy is measured through runtime and the impacts of some parameters are tested by
variable controlling.

6.2 Preprocessing Time

Establishing index.
Before doing similarity query, inverted table needs to be established to shorten the
query time. The cost of our inverted index is 𝑂(𝑛2). This experiment is tested on
three real datasets and one synthetically generated dataset. The dataset description and
the time used to build inverted table are shown in Table 2. Such is offline time, for the
inverted table is only built once every time when a new dataset was read, which
means that when processing other queries, we use the same inverted table.

By using such index, query processing can be very fast. We make comparison of
processing query by traditional method and by using our index, the histogram Figure
4 (a) with time unit of millisecond illustrates that when doing similarity query, the
runtime of using index only costs about one-third time when the dataset is not very
big and the advantage can be more obvious on more complex datasets. Even though
we add the query time together with time of building inverted table, the total time is
still much shorter than that of the traditional method.

Table 2. Time of Establishing Inverted Table

Dataset Number of Strings Time of establishing inverted table (s)
Conference 2199 0.09245
Protein 10000 0.64021
Mammal 50000 0.94835
Random 150194 3.78483

Vector transformation and dataset cluster.
In algorithm CB2S we perform vectorization by calling the python interface
‘word2vec’ provided by Spark 2.0.0. with Hadoop 2.7. The development tool is py-
Charm. After getting access to the vectors, we use the interface of k-means in
MATLAB to separate datasets into clusters. The runtime of transformation in four
datasets is shown below. Although the vectorization costs some time, this process
does not need to be run for a second time if there is not any change in the searching
space. Also, vector matrix does not need to rebuild when new items are added. Just
update the vector matrix by calling the interface of increment.

Table 3. Preprocessing Time of CB2S

Dataset Number of
Strings

Time of vectorization
(s)

Time of clustering (s)

Conference 2199 5.373 0.810
Protein 10000 24.694 1.383
Mammal 50000 11.025 1.278
Random 150194 41.78483 1.735

6.3 Impact of parameters

In this section, we tested the performance of our query processing algorithms consid-
ering two parameters that might influence the final object function 𝐹(𝑆, 𝑞), including
the trade-off threshold λ, the value of average of 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥. When making analy-
sis of 𝐹(𝑆, 𝑞), we can clearly find the associated relationship between 𝐹(𝑆, 𝑞) and λ.
However, when it comes to 𝑘, 𝑘 influences 𝑎𝑟𝑔𝐷𝑖𝑣 and 𝑎𝑟𝑔𝑆𝑖𝑚. Hence, 𝑘 influences
𝐹(𝑆, 𝑞) but not directly. We fix k to see how 𝐹(𝑆, 𝑞) changes with the change of λ.

After that, we do the same to 𝑘. This part is tested in dataset Random, for this da-
taset is more well-distributed without too much special or extreme data. The default
value of λ is 0.5 and 𝑘𝑚𝑖𝑛=25, 𝑘𝑚𝑎𝑥=55.We set =30 and changes of 𝐹(𝑆, 𝑞) of three
algorithms are shown as below.

From Figure 3, we see an increasing trend of three algorithms, which is just as what
we expected. The goal function 𝐹(𝑆, 𝑞) = λ 𝑎𝑟𝑔𝐷𝑖𝑣(𝑆, 𝑞) + (1 − λ) (– 𝑎𝑟𝑔𝑆𝑖𝑚(𝑆, 𝑞)) =
λ (𝑎𝑟𝑔𝐷𝑖𝑣(𝑆, 𝑞) + 𝑎𝑟𝑔𝑆𝑖𝑚(𝑆, 𝑞)) − 𝑎𝑟𝑔𝑆𝑖𝑚(𝑆, 𝑞) , when λ = 0.5, 𝐹(𝑆, 𝑞) =
0.5(𝑎𝑟𝑔𝐷𝑖𝑣 − 𝑎𝑟𝑔𝑆𝑖𝑚). Both 𝑎𝑟𝑔𝐷𝑖𝑣 and 𝑎𝑟𝑔𝑆𝑖𝑚 rise when 𝑘 gets larger. However,
𝑎𝑟𝑔𝐷𝑖𝑣 grows faster than 𝑎𝑟𝑔𝑆𝑖𝑚, thus leads to the final trend.

The result of 𝐹(𝑆, 𝑞) changing with λ is relatively similar. λ = 0 means traditional
similarity query without considering inner diversity, while a higher value of λ tries to
involve more diversity. When λ = 1, only diversity is taken into consideration ignor-
ing the distance to query input. Although the line of genCluster slightly decreased
from λ = 0.6 to λ = 0.7, the increasing trends of three algorithms are obvious.

6.4 Comparisons

In this section, we compared the performance of our relaxation-diversify algorithms
with two other algorithms swap and comGreedy presented in previous paper [12].
Although they are used to solve a different problem of document mining, when
changing the document to be processed into dataset of strings, processing query in
datasets and diversifying the query results can get a result set similar to our approach-
es. Thus, we choose these two algorithms for comparison.

In this experiment, we set 𝑘𝑚𝑖𝑛 = 25 and 𝑘𝑚𝑎𝑥 = 55 to do query with our algo-
rithms and use = 40 as the initial edit distance threshold. The datasets used for
comparison are mentioned in Sec 6.1. We use runtime to evaluate the efficiency and
the value of object function 𝐹(𝑆, 𝑞), the number of results to estimate their perfor-
mance.
Efficiency.
The runtime of five algorithms is tested on dataset Mammal, for Mammal is well-
distributed and large enough. The string length covers from 40 to 200 and does not
have too much special data. We set λ, and k the default values mentioned in the last
section, and change the data size to see how runtime changes. The efficiency shows in
Figure 4 (b) and the time unit is second.

From the figure we observe that CB2S runs fastest and comGreedy is the slowest

one. CB2S puts more time on preprocessing which makes a contribution to its fast

speed. Especially when running on larger datasets, the advantage of CB2S is more
obvious for it effectively reduces the searching space. With the growth of data size,
the runtime does not increase too much. Behind CB2S, the efficiencies of genGreedy,

genCluster and swap are similar. ComGreedy is the slowest algorithm due to its com-
plexity. The speed can also be proved by comparing the algorithm complexity of these
five methods. Complexities of CB2S, genGreedy, swap, genCluster and comGreedy
are 𝑂(𝜎𝑘𝑀 + 𝑁’), 𝑂(𝑘𝑁 + 𝑘 𝑙𝑜𝑔 𝑘), 𝑂(𝑁𝑘 𝑙𝑜𝑔 𝑘), 𝑂(𝑁𝑘) and 𝑂(𝑁𝑘) , respectively.
CB2S wins in complexity. Although the comGreedy also possesses a low complexity,
it takes longer time to run for multiple passes [12].

Fig. 3. Impacts of Parameters

Fig. 4. Runtime Comparison

Performance.
We tested the performance through measuring the value of 𝐹(𝑆, 𝑞)and the number of
results. We change the threshold of edit distance to query a specific string. Relevance
of each algorithm is obtained by calculating the average of edit distance between re-
sult items and the user input, and the diversity is calculated by inner edit distance
between each pair of strings. In four datasets the results appear similar in some extent.

Figure 5 illustrates the generally increasing trend of five algorithms. On different
datasets, the lines fluctuate at some thresholds of . Such conditions happen when the
items added to result set are not good enough but still has to be added to fit the re-
quirement of returning 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 results. The gaps among algorithms are not very
significant.

From Figure 6, we observe that the numbers of items in the result set generated by
genCluster and genGreedy and CB2S are obviously more than the other two, nearly

double in Conference, Protein and Radom. genGreedy and genCluster usually

return the most results in five algorithms while CB2S is just a little fewer. These three
algorithms fit the requirement of range from 25 to 55 items. We can find that
comGreedy is not very stable according to variable datasets. Also, when the threshold

of edit distance is small, the results returned by swap and comGreedy can be too few.
In this section, our algorithms perform better.

20 30 40 50 60
0

10

20

30

40

50

60

70

0.0 0.3 0.6 0.9

10

20

30

F
(S

,q
)

 genGreedy

 genCluster

 CB2S

(k
min

+k
max

)/2

F
(S

,q
)

 genGreedy

 genCluster

 CB2S

Mammal Conference Protein Random
0

2000

4000

R
u
n
ti
m

e
 (

m
s
)

Dataset

 index

 traditional

5k 1.5w 2.5w
0

10

20

30

40

(b) Runtime with Data Size

R
u
n
ti
m

e
 (

s
)

Data Size (item)

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

(a) Efficiency of Index

Fig. 5. Performance Comparison of 𝐹(𝑆, 𝑞)

Fig. 6. Performance Comparison

7 Conclusion

To obtain high-quality results, this paper combines query relaxation and result diversi-
fication. We develop a new measure for such combination. To process query efficient-
ly, we propose three algorithms, genGreedy, genCluster and CB2S, for different sce-
narios. As far as we know, this is the first work to balance query relaxation and result
diversification. We evaluate our work on various datasets. The experiment shows that
when providing similar relevance to query input and similar inner diversity in result
set, our algorithms relax the result set to a proper size at high speed. genGreedy and

genCluster are simple and effective without complex preprocessing. CB2S needs

20 40 60

10

20

30

40

20 40 60

8

16

24

60 90 120

10

20

30

40

60 90 120

6

12

18

F
(S

,q
)

Edit Distance

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

RandomProtein

Conference

F
(S

,q
)

Edit Distance

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

Mammal

F
(S

,q
)

Edit Distance

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

F
(S

,q
)

Edit Distance

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

20 40 60
0

20

40

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

N
u

m
b
e
r

o
f
R

e
su

lts

Edit Distance

 genGreedy

 genCluster

 CB2S

 swap

 comGreedy

20 40 60
0

20

40

N
u

m
b
e
r

o
f
R

e
su

lts

Edit Distance

60 90 120
0

20

40

RandomProtein

Mammal

N
u

m
b
e
r

o
f
R

e
su

lts

Edit Distance

60 90 120
0

20

40

N
u

m
b
e
r

o
f
R

e
su

lts

Edit Distance

Conference

some time to do preprocessing work, but performs very well in speed, especially in
large searching space. Our future work will focus on parallelizing CB2S on a distrib-
uted system to achieve higher efficiency.
Acknowledgments. This paper was partially supported by NSFC grant U1509216,
61472099, National Sci-Tech Support Plan 2015BAH10F01, the Scientific Research
Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province
LC2016026 and MOE–Microsoft Key Laboratory of Natural Language Processing
and Speech, Harbin Institute of Technology. Hongzhi Wang is the corresponding au-
thor of this paper.

8 References

1. C Li,J Lu,Y Lu.Efficient Merging and Filtering Algorithms for Approximate String Searches. IEEE
International Conference on Data Engineering, 2008

2. Kaiping Zheng, Hongzhi Wang. A Survey of Query Result Diversification. Knowledge &Information
System.2016.

3. Ziegler C N, Mcnee S M, et al. Improving recommendation lists through topic diversification. Prom-
ontory Press. 1974.

4. Drosou M, Pitoura E. DisC diversity: result diversification based on dissimilarity and coverage. Pro-
ceedings of the Vldb Endowment. 2013.

5. Agrawal R, Gollapudi S, Halverson A, et al. Diversifying search results ACM International Confer-
ence on Web Search & Data Mining. 2009.

6. Deng, D, Li, G.,Feng, J. A pivotal prefix based filtering algorithm for string similarity search.
SIGMOD. 2014.

7. Jain A, Sarda P, Haritsa J R. Providing Diversity in K-Nearest Neighbor Query Results. Lecture Notes
in Computer Science. 2003.

8. Yang, Yiming, Pedersen. A Comparative Study on Feature Selection in Text Categorization. Advances
in Information Sciences & Service Sciences, 2012.

9. Joachims T. Text Categorization with Support Vector Machines: Learning with Many Relevant Fea-
tures. Proc. European Conf. 1998.

10. Kim J D, Ohta T, Tateisi Y, et al. GENIA corpus--semantically annotated corpus for bio-text mining.
Bioinformatics. 2003.

11. Larsen, BjornarAone, ChinatsuB. Fast and Effective Text Mining Using Linear-time Document Clus-
tering. KDD-ACM.1999.

12. Yu C, Lakshmanan L, Amer-Yahia S. It takes variety to make a world: diversification in recommender
systems. EDBT 2009.

13. Haveliwala T H, Gionis A, Klein D, et al. Evaluating strategies for similarity search on the web. Inter-
national Conference on World Wide Web. 2010.

14. Zheng J G, Howsmon D, Zhang B, et al. Entity linking for biomedical literature. BMC Medical In-
formatics and Decision Making. 2015.

15. Gish W, States D J. Identification of protein coding regions by database similarity search. Nature Ge-
netics. 1993.

16. Drosou, Marina, Pitoura, et al. Search result diversification. Proceedings of the National Academy of
Sciences. 2010.

17. Vee E, Srivastava U. Efficient Computation of Diverse Query Results. 2008.
18. C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge,

2004. Page 97-100
19. Santos L, et al. Combine-and-conquer: improving the diversity in similarity search through influence

sampling ACM Symposium on Applied Computing.2015.
20. Santos, L.F.D., Oliveira, W.D., Ferreira. Parameter-free and domain-independent similarity search

with diversity. SSDBM. 2013.
21. Mirzadeh N. Supporting User Query Relaxation in a Recommender System. E-Commerce and Web

Technologies. 2004.
22. Zhou X, Gaugaz J. Query relaxation using malleable schemas. ACM SIGMOD, 2007.
23. Wagner R A, Lowrance R. The String-to-String Correction Problem. Journal of the Acm, 1974.
24. Zhang Z, Hadjieleftheriou M. Bed-tree: an all-purpose index structure for string similarity search

based on edit distance. SIGMOD 2010.
25. Thompson J D. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids
Research, 1994.

26. Hartigan J A, Wong M A. A K-Means Clustering Algorithm. Applied Statistics, 1979.
27. Han E H, Karypis G. Text Categorization Using Weight Adjusted k -Nearest Neighbor Classification.

Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2001.
28. Vargas S, Castells P. Explicit relevance models in intent-oriented information retrieval diversifica-

tion.International Acm Sigir Conference on Research & Development in Information Retrieval. 2012.
29. Sun F, Wang M, Wang D, et al. Optimizing social image search with multiple criteria: Relevance, diver-

sity, and typicality. Neurocomputing, 2012.
30. Yang J, Hu G. Computational biology: methods and applications for the analysis of biological se-

quences. www.sciencep.com. 2010.

http://xueshu.baidu.com/s?wd=author%3A%28Li%2C%20Chen%29%20Dept.%20of%20Comput.%20Sci.%2C%20Univ.%20of%20California%2C%20Irvine%2C%20CA&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Lu%2C%20Jiaheng%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Lu%2C%20Yiming%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28fffef7f72e3e2e1060e4c784208dabda%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D4497434&ie=utf-8&sc_us=5683660535408659088
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28a029fdbdeb0c582a%29%20IEEE%20International%20Conference%20on%20Data%20Engineering&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28a029fdbdeb0c582a%29%20IEEE%20International%20Conference%20on%20Data%20Engineering&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://www.sciencep.com/

