
Efficient Web-based Data Imputation with Graph
Model

Yiwen Tang1, Hongzhi Wang1, Shiwei Zhang1, Huijun Zhang1, and Ruoxi Shi1

isabeltang147@gmail.com, wangzh@hit.edu.cn, ylxdzsw@gmail.com,
zhjsss12@hotmail.com, shiruoxi@hit.edu.cn

1Harbin Institute Of Technology,China

Abstract. A challenge for data imputation is the lack of knowledge. In this
paper, we attempt to address this challenge by involving extra knowledge from
web. To achieve high-performance web-based imputation, we use the depen-
dency, i.e. FDs and CFDs, to impute as many as possible values automatically
and fill in the other missing values with the minimal access of web, whose cost
is relatively large. To make sufficient use of dependencies, We model the de-
pendency set on the data as a graph and perform automatical imputation and
keywords generation for web-based imputation based on such graph model.
With the generated keywords, we design two algorithms to extract values for
imputation from the search results. Extensive experimental results based on
real-world data collections show that the proposed approach could impute
missing values efficiently and effectively compared to existing approach.

1 Introduction

According to recent statistics, the quality of database degenerates over time and causes
loss or even disasters[1]. Data quality issues are to be solved to ensure the usability of
data. For data quality issues, data incompleteness is one of the most pervasive data
quality problems to handle[2]. Due to its importance, data imputation has been widely
studied [3][4]. However, big data era brings new challenges for data imputation.

Firstly, for big data, knowledge is often insufficient for imputation, especially for
the case with many missing values. Thus, extra knowledge is often required for big
data imputation.

Second, even with sufficient knowledge, the accuracy of imputed value could not
be ensured due to inconsistency and outdated data. For example, missing value could
be filled according to existing knowledge base. With inconsistent or outdated data in
corresponding item the knowledge base, the correct value could hardly be imputed.

Last but not least, efficiency is a non-negligible issue for big data imputation. Big
data may contain many missing values to imputation. Timely imputation requires
efficient imputation algorithms.

Facing to these challenges, some approaches have been proposed. Web is often
adopted as supplementary knowledge since web contains a large number of data
sources. An example is WebPut [8]. However, WebPut requires many times of web
search, whose cost is too large to meet the need of high efficiency.

Recently, crowdsourcing is very popular which organizations use contributions
from Internet users to obtain needed services or ideas. However there has limitation
on this method. Crowdsourcing allows anyone to participate, allowing for many un-
qualified participants and resulting in large quantities of unusable contributions which
may reduce the accuracy.

ar
X

iv
:1

61
1.

04
28

8v
1

 [
cs

.D
B

]
 1

4
N

ov
 2

01
6

2

Other approaches utilize initial data, in which approximate values are selected as
the imputing values, according to the distribution characteristics or the constrains
between attributes [10][3][11]. However, these methods are only suitable for numerical
attributes but fail to impute category attributes.

In order to solve such problems, we introduce an optimized web-based data clean-
ing method. For both efficiency and effectiveness issues, we attempt to select proper
missing values to be imputed according to the web based on the dependency be-
tween values, i.e functional dependency (FD) or conditional dependency (CFD), such
that other missing values could be imputed accurately based on the imputed values.
With the consideration of complex dependency relationships among missing values,
we model such relationships as a directed graph, which is called statistical dependency
graph (SDG). In a SDG, we introduce three kinds of nodes, attribute nodes, condition
nodes and logic relation nodes to represent attributes, condition from CFD and the
relationship among attributes, respectively. Since the value of an attribute may be
implied from other values according to the relationship, it is necessary for us to add
a logic node between attribute nodes.

Furthermore, to achieve high filling ratio according to web, we leverage the capa-
bilities of web search engines towards the goal of completing missing attribute values
based on the keyword group obtained from SDG. We input the keyword group in
the search engine to get the text dependency from Internet. Text dependency is the
relation between attribute and text or attribute and attribute, which is the pattern
for data cleaning. For some data set, it is difficult to find pattern. In this case, we
just use keyword group values for searching.

The contributions of this paper are summarized as follows.

– We propose an optimized web-based big data imputation approach based on the
dependency among missing values to increase the efficiency without the loss of
effectiveness. As we know, this is the first work to combine the dependency with
web-based imputation.

– To increase the filling ratio, we use multiple search engines to cover as many data
sources as possible. With the consideration of the variety in representation, we
develop pattern discovery and keyword-group-based search algorithms to extract
proper information for imputation from the search results.

– We conduct extensive experiments to test the performance of proposed approaches.
Experimental results show that our approach could impute large data sets effi-
ciently and effectively for various data types.

The remaining parts of this paper are organized as follows. Section 2 introduce back-
ground and overview the approach. We define graph model in Section 3. The impu-
tation approach based on web search is proposed in Section 4. Experimental results
and analysis are presented in Section 5. Section 7 draws the conclusions.

2 Overview

In this section, we introduce background and overview our approach.

2.1 Introduce To Functional Dependency

A functional dependency is a constraint that describes the relationship between at-
tributes in a relation. A functional dependency FD : X → Y means that the values of
Y are determined by the values of X. Conditional functional dependency(CFD) [9] is
proposed as a novel extension of FDs. FD holds on all the tuples in the relation, while

3

CFD is an FD which holds on the subset of tuples satisfying a certain condition. Com-
pared with FDs, CFDs incorporate the bindings of semantically related values which
can effectively capture the consistency of data. Thus, CFD represents the dependency
relationship among attributes more subtly. As a result, We can use FDs or CFDs to
find the missing data based on known values according to their dependencies.

Table 1. NBA Team Example

ID Team Start-End Arena Location Capacity Coach

t1 Golden State Warriors 1964-1966 CivicAuditorium SanFrancsicoCA 7500
t2 Golden State Warriors 1964-1966 USFMemorialGym 6000 A.Hannum
t3 Oklahoma City Thunder 2007-2014 OklahomaCityOK 18203
t4 1966-1967 CivicAuditorium
t5 Atlanta Hawks 1949-1951 WheatonFieldHouse Arnold Jacob

We use an example to illustrate FD and CFD.

Example 1. Consider Table 1, which specifies the NBA team VS arena in terms of
the Team, Start-End, Arena, Location and Capacity. A set of CFDs and FDs on this
data set is as follows.

f1 : [Arena]→ [Location, Capacity]
f2 : [Start− End,Arena]→ [Team,Location,Capacity]
f3 : [Start− End, Team]→ [Arena]
f4 : [Arena]→ [Team], 80%
f5 : [Capacity]→ [Location], 70%
f6 : [Coach = A.Hannum,Start− End]→ [Team]
f1 is an FD and shows that Arena determines the value of Location and Capacity.

In contrast, f6 holds on the subset of tuples that satisfies the constraint “Coach =
A.Hannum”, rather than on the entire table. Compared with FDs, f6 cannot be
considered an FD since f6 includes a constraint with data values in its specification.
In a word, we can utilize the values of some attribute to determine missing values for
imputation according to FDs, and CFDs can compensate FDs for achieving potential
relations conditionally to find missing value in a domain.

2.2 Overview Of Our Approach

For efficient and effective imputation, we develop the web-based imputation frame-
work in Fig 1. The basic flow of the framework is to construct some keyword groups
according to the attribute names, values and dependencies, retrieve results from search
engines with keyword groups and extract values for imputation from search results.

To reduce the number of values to be imputed according to web, we adopt depen-
dencies. With the consideration of multiple dependencies on the data set, we design
a graph model for dependencies, Statistical Dependency Graph(SDG), which will be
defined in Section 3.

As shown in Fig 1, the first step constructs the SDG according to the dependencies
among data. Through the statistics information, confidence, the statistics of the data
set representing the possibility that a parent node determines a child node, is intro-
duced as the weight of the SDG. Such confidences are used to generate the optimal
keyword group for the further step. The details of SDG construction is described in
Section 3.1. According to dependencies in SDG, we use naive Bayes [12] to impute
missing values based on existing values directly without accessing web to accelerate
imputation (Section 3.2). After such internal imputation step, we generate keyword

4

Fig. 1. The Imputation Framework

groups by the largest confident single sink graph discovery algorithm to the target
vertex on SDG (Section 3.3), where a single sink graph is a special subgraph of SDG
with the sink as the attribute node corresponding to a missing value and the sources
as the attribute with existing values in the original data.

The selected optimal keyword group is submitted to web search engines and the
results are used for imputation. To obtain proper keywords for the search engine,
we obtain the pattern though keywords group value from clean tuples. Otherwise,
it means that the missing value could hardly be extracted with some fixed pattern.
Thus, we submit the keywords group with the attribute name corresponding to the
missing value to the engine and extract the the value for imputation with dictionary.

We use an example to illustrate the flow.
Example 2. We attempt to imputation missing values in the NBA data set in Table 1.
According to our model, we firstly construct the SDG based on FDs(f1, f2, f3, f4, f5)
and CFD(f6) shown in Figure 2. In this example, we assume that all of the weights
of f1, f2, f3, f6 are 100%, and the weights of f4, f5 are 80% and 70%, respectively.

Fig. 2. SDG based on Table 1

5

Then, we proceed to internal imputation according to the SDG based on naive
Bayes. In this example, we can impute the missing value of attribute Capacity based
on f1. Firstly, we obtaion all possible values of attribute Capacity such as 7500, 18203.
According to f1, we find that attribute Arena determines attribute Capacity. Since
the Capacity of CivicAuditorium is 7500 from t1 in data set, we impute 7500 in t4.

After the internal imputation, we obtain the keyword group from the single sink
graph according to SDG. In the SDG, the single sink graph with maximum confi-
dence for attribute Arena, Location, Capacity, Team is shown in Fig.3(a), Fig.3(b),
Fig.3(c), Fig.3(d), respectively. The confidence of the four graphs are all 100% based
on Fig.2. Since the vertex with short path to the sink have high confidence to imply
the value corresponding to the sink, we obtain the single sink graph through breadth
first search (BFS). The weight of a graph is the product of confidences of all edges
in the graph. From the single sink graph, we generate four keyword groups {Start−
End, Team,Arena}{Arena, Location}{Arena,Capacity}{A.Hannum,Start−End, Team},
respectively.

(a) (b)

(c) (d)

Fig. 3. Single Sink Graph

For example, if we want to find the missing value of Location in t5, We firstly
submit keyword group {CivicAuditorium, SanFrancsicoCA} to the search engine
and discover the pattern from search result. The pattern is “A1inA2”, where A1 and
A2 are attributes and “in” is context.

Next, we search “WheatonFieldHouse in” to obtain the missing value of Location
on web. We use a dictionary to extract the value which is the closest with key-
word group. On the other hand, if we cannot achieve the pattern, then we search
{WheatonFieldHouse, Location} to find the missing value according to the optimal
keyword group {Arena, Location}. The way of value extraction is based on dictio-
nary as well. In the example, we obtain result Get information about WheatonField-
House in Wheaton, IL, including location, directions, reviews and photos . . . from
web. We match “WheatonIL” from the result based on dictionary. Then we choose
“WheatonIL” as the value for imputation.

6

3 Graph-based Model

In this section, we introduce graph-based model as well its usage in imputation. We
first define the structure of SDG in Section 3.1 and introduce internal imputation
based on naive Bayes in Section 3.2 according to SDG. As internal imputation cannot
fill all missing values, we then generate keyword groups to be submitted to search
engine for web-based imputation. Keyword group selection approach is proposed in
Section 3.3.

3.1 SDG Definition

The goal of SDG is to capture the complex (conditional) dependency relationships
among attributes for further internal imputation and keyword group generation. Since
a dependency relationship between two attributes could be naturally modelled as an
directed edge, we model the set of dependencies as a weighted directed graph. The
SDG based for f1 to f6 is shown in Fig.2.

With such considerations, we define SDG as follows.

Definition 1. A Statistics Dependency Graph(SDG) is a weighted directed graph
G=(Va, Vl, Vc, E, W) corresponding to a CFD set S, where Va is the set of at-
tribute nodes, Vl is the set of logic nodes, Vc is the set of condition nodes, E is the
set of directed edges, and W is the weight function of edges. W is the confidence
which is the ratio of number of tuples which satisfied the DFs and the total number
of tuples. For each CFD f ∈ S, f : {C, a1, a2, . . . an} → {d1, d2, . . . dm, confidence}.
a1, a2, . . . an, d1, d2, . . . dm are attributes which are represented as attribute nodes (va ∈
Va). C represents the condition, denoted as the condition node vc ∈ Vc. When mul-
tiple attributes determine other attributes, we introduce a logic node vl ∈ Vl with the
parents as a1, a2, . . . an and the children as d1, d2, . . . dm. Confidence is represented as
the weight on the graph of the graph.

The structure of SDG based on Example 1 is shown in Fig.2. According to f1−f6, there
are five attributes in FDs and CFD. Additionally, in f2, f3 and f6, multiple attributes
determine other attributes. For example, when both attribute Start−End and Arena
are known, we can determine attribute Team, Location and Capacity according to f2.
We can see that attribute Start−End and Arena has logical relationship. Also f6 has a
condition to restrain the dependency. [Coach = A.Hannum,Start−End]→ [Team],
which consists of a pattern tuple (A.Hannum, ,). The condition is that the value
of an attribute Coach is A.Hannum. As a result, we construct a SDG with five
attribute nodes(Va), three logic nodes(Vl) and a condition node(Vc). We can obtain
the weight of FDs and CFD according to the statistics of the data sets. In Example
1, the confidence of f1− f6 are 100%, 100%, 100%, 80%, 70% and 100%, respectively
according to the weights of SDG.

From this example, we could discover that SDG could effectively represent the
depending relationship among attributes according to FDs and CFDs with their con-
fidences.

3.2 Internal Imputation

Considering the large cost of web accessing, we fill missing values according to the
internal information of the data before web search. We choose naive Bayes approach
in this step since it has several advantages. First of all, Bayes is both time and space
efficient. We can look up all the probabilities with a single scan of the database and
store them in a table. Besides, Bayes can handle both numerical values and categories.

7

Therefore, we use Naive Bayes for imputation according to SDG. That is to infer some
missing values with existing values according to the FDs or CFDs.

We use Naive Bayes to impute data from the original data set. The approach has
three stages, the preparation stage, classifier training stage, and application stage. In
the first stage, we obtain the attribute set A which can determine attribute of missing
value. Then we obtain all possible values from other tuples as the candidate dj . In the
second stage, we calculate the probability P for each candidate and the conditional
probabilities for each attribute from A. In the final stage, P (A|yi)P (yi) are calculated
for each candidate and we select the candidate from the maximum term as the data
for imputation. The definition is as follows.

Attribute A1, A2, . . . , An determine attribute D according to the dependency.
There is a missing value in attribute D in one tuple x = {a1j , a2j , . . . , akj , , ak+1j , . . . , anj}
of the data set(1 ≤ k ≤ n− 1). We first scan the table to obtain all possible values of
D denoted by d1, d2, . . . , dm.

Thus, for each dj , we need to calculate the probability P (dj , a1j , a2j . . . anj). With
the assumption that attributes are independent of each other, according to the Bias
theorem[12], at first we compute P (ai|dj) for each ai and dj . Then for each dj , we
calculate as follows.

P (di, a1j , a2j , . . . , anj) = P (di)× P (a1j |di)× P (a2j |di), . . . , P (anj |di)(1 ≤ i ≤ m).(1)

Based on the deduction, we obtain the probability of all possible values of attribute
D in turn. The threshold k is introduced to compare with the highest probability. If
the highest probability reaches k, then the corresponding value will be filled in tuple
x. Otherwise, we search on web. For a CFD like f6, we obtaion the possible values
from the tuple which satisfies the condition.

Algorithm 1 Internal Imputation based on Bayes

Input:
data set, threshold K

Output:
missing value

1: for tuple(attr0, . . . , attrn) in data set do
2: if tuple(a0,, an) has missing value of attri then
3: get x = {d1 . . . dm}
4: /* where dj (1 ≤ j ≤ m) is each possible value of attrii */
5: for each dj∈x do
6: P (dj , a0, . . . , ai−1, ai+1 . . . , an) = P (dj) u iP (ai|dj)
7: select (maxP (dj , a0, . . . , ai−1, ai+1 . . . , an), dj)
8: if dj < k then
9: missing value = NA

10: else
11: missing value = dj

The pseudo code of internal imputation based on Bayes is shown in Algorithm
1. We obtain the possible values of missing attribute dj from other tuples (Line 3).
According to 1, we calculate the probability for each dj (Line 6). Then we select
the value dj of maximum P (dj , a0, . . . , ai−1, ai+1 . . . , an) (Line 7). If dj is less than
the threshold K, we cannot impute with dj and give up the imputation (Line 8,9).
Otherwise, we impute missing value of dj(Line 11).

8

We use an example to illustrate this approach. According to the NBA Team Ex-
ample in Table 1, t4 has missing values in attribute Team, Location, Capacity and
Coach. We can impute value of attribute Location and Capacity based on f1. Firstly,
the possible values of Location are {SanFrancsicoCA,OklahomaCityOK} and those
of Capacity are {7500, 18203}. According to 1, P (SanFrancsicoCA,CivicAuditorium) =
P (SanFrancsicoCA) × P (CivicAuditorium|SanFrancsicoCA)=1 which is larger
than probability of OklahomaCityOK (0), P (7500, CivicAuditorium) = P (7500) ×
P (CivicAuditorium|7500)=1, which is larger than probability of 18203(0). As a re-
sult, the value of Attribute Location and Capacity are SanFrancsicoCA and 7500,
respectively.

Note that all missing values cannot be imputed with internal information. For
example, in t5, the attribute Location and Capacity cannot be imputed according to
other tuples. The probability of the candidate {SanFrancsicoCA,OklahomaCityOK}
for Location and {7500, 6000, 18203} for Capacity are 0, respectively. For such cases,
we have to obtain such information from external knowledge sources, i.e. web. Then,
we discuss how to generate keyword groups for web-based imputation.

3.3 Keyword group selection
Since we attempt to use search engine for web-based imputation. To make sufficient
and efficient use of search engine, proper keywords generation is crucial. In this section,
we define single sink graph and discuss the generation approaches for proper keyword
groups. The definition is as follows.

Definition 2. A Single sink graph is a subgraph of SDG, G∗ ⊂ G. G∗ has a sink
and a set of source. We define the attribute whose value vt needs to be imputed as the
sink node t. The attributes corresponding to the existing values are the sources while
each other node from a source s to t corresponds to an attributes with missing values.

We find that one node may have many previous nodes in SDG. It means that
many dependencies correspond to one attribute. If we randomly choose a single sink
graph for data imputation, the accuracy is affected because the source node may
not have the closest relation with the sink node. As a result, using such keyword to
search may get the wrong value in higher probability. Therefore, it requires to choose
a proper dependency for imputation. As discussed in Section 3.1, a SDG denotes the
relation among attributes and also reflects the dependency of the attributes. We can
find the most confident dependency through SDG. In the optimal keyword group,
the confidence as the production of all edges should be maximized. To this end, we
develop an efficient algorithm for finding the optimal keyword group by breadth first
search to select the single sink graph with maximum production of confidences in
SDG.

In this algorithm, the confidence means how much the probability for a node
to determine its child. Therefore, a higher confidence means higher dependency. For
efficiency and accuracy, we should choose the single sink graph with highest confidence
from SDG. Considering that the value of parent node may miss as well, we should
continue to find the previous node of the parent node until we find the node with
existing data as the source node. During BFS, we find that the dependency will be
weak with continuous tracking back to the previous node. As a result, we define the
production of confidences of all edges as the weight of the single sink graph. We start
at an attribute with missing values. Then we find all its parent nodes and record the
corresponding confidences. If the values of some parent nodes are missing, we continue
to find the previous node and record the production of the confidence. We introduce

9

a threshold k to denote the credibility of the keyword group. If the cost is less than
k, the keyword group should not be submitted to the search engine. Finally, we select
the single sink graph with maximum weight and obtain the optimal keyword group
which contains all nodes in the graph.

Algorithm 2 Optimal Keyword Group Selection

Input:
missing value, SDG, threshold K

Output:
G∗

1: Initialize CandidateRule = ϕ
2: for each rule ∈ RuleList do
3: for each condition ∈ rule.ConditionList do
4: search for the attribute in condition
5: if meet condition then
6: for each Dependentproperties ∈ rule.DependentPropertiesList do
7: c = rulec × uc(c ∈ condition of Dependent properties)
8: add rule to CandidateRule
9: else

10: add rule to CandidateRule, c = 0
11: G∗ = maxrulec
12: if G∗c < Kthen then
13: result NA

Algorithm 2 shows the optimal keyword group selection algorithm. For each rule
in RuleList, If meet condition in correspondence ConditionList, we calculate the
production of confidence and add rule to the CandidateRule(Line 2-8). Otherwise,
we set confidence as 0(Line 9, 10). After that, we obtain the optimal G∗ with the
maximum confidence(Line 11). If the confidence is less than threshold K, the optimal
G∗ is abandoned(Line 12, 13).

We use an example to illustrate this algorithm.

As is shown in Fig.2, the SDG is based on Table 1. In t5, the value of attribute
Location is missing. According to Fig.2, two attributes Capacity and Arena determine
the attribute Location. Since the value of Capacity is missing as well, we need to
find its parent which is attribute Arena. The first single sink graph is {Arena →
Capacity → Location}, with weight W = 100% × 70%. It is obvious that we can
determine the value of Capacity according to attribute Arena, but the probability
is only 70% to determine value of Location according to attribute Capacity. In a
word , we may have probability 30% to impute the wrong value. The second single
sink graph is {Arena→ Location}. Compared with the first graph, the confidence is
100% which outnumbers the first graph confidence. For accuracy, we define threshold
K = 80% to constrain the graph. In this situation, the first graph will be abandoned.

Keyword group selection is important for pattern mining and web searching. We
can effectively find the missing value according to the keyword group based on the
single sink graph with maximum confidence.

Time and Space Complexity. In this algorithm, we scan all missing values. In this
part, the time and space complexity is O(n). For missing value, we obtain a single
sink graph from SDG by BFD. As a result, the time complexity is O(|V |+ |E|) and
the space complexity is O(B), where B is the maximum branch coefficient.

10

4 Data Imputation Based On Web

To find proper information, we submit generated keyword groups to search engine
and extract values for imputation from returned results. Most information on the
web is text, and we require to extract proper value from text for imputation. For
such extraction, we define the pattern in Section 4.1. We also propose the pattern
mining approach and pattern-based imputation value extraction in Section 4.2. For
the special case without significant pattern, we also give the solution to achieve high
filling ratio.

4.1 Text Dependency

Intuitively, the values in the text with special context corresponding to some entities
in a tuple. For instance, in the Table 1, when we search keywords CivicAuditorium
and SanFrancsicoCA, we will achieve the results that Civic Auditorium is a multi-
purpose venue in San Francisco which reflect the relation between attribute Arena
and Location. Thus, we attempt to use such context with variables representing val-
ues in the tuple as the pattern. With such pattern, we could extract the value for
imputation according to existing values in the tuple. For example, we want to find
the missing value in t5[Location] based on f1. We firstly search CivicAuditorium
SanFrancsicoCA and mine pattern from the results. The obtained pattern is “[Arena]
in [Loacation]”. After that, we search “WheatonFieldHouse in” and obtain result
“Get information about WheatonFieldHouse in Wheaton, IL, including location, di-
rections, reviews and photos . . . ”. From this phrase, we know that Wheaton is
in the position of [Loacation]. We match it with dictionary and find the imputed
value“WheatonIL”.

Motivated by this, we define text dependency as the pattern as follows.

Definition 3. A pattern is in form of P = X1A1X2A2 . . . XnAkXk+1, where Xi

represents a phrase and Ai is an attribute in the table T to impute. For a tuple
t ∈ T , we denote “X1t[A1]X2t[A2] . . . Xnt[Ak]Xk+1” as P (t). For a text set S, a text
dependency P and a table T , SP,T ={S|S ∈ S ∧ ∃t ∈ T , P (t) ∈ S}. For a pattern P ,
if |S(P, T)|/|S| ≥ Q, where Q is a threshold, P is called a text dependency on S.

For example, a text dependency could be “WheatonFieldHousein” as is men-
tioned above. With such patter, WheatonIL could be extracted from the text in the
return result according to the value CivicAuditorium and SanFrancsicoCA. Such
value could be imputed to the value of attribute Location in t5 in Table 1.

4.2 Pattern mining

We observe that only the pattern which reflects the relation between attributes are
useful for us to obtain result such as verbs and prepositions. However, sometimes we
may extract some meaningless word which cannot help us to achieve correspondence
text. Thus, according to the keyword group, we need to mine the text which introduces
the relation between attributes so that we can utilize the relation to depict the value
we want. As a result, our algorithm search values of keyword group to retrieve result
from web which contains such relation. If the number of phrase S appearances exceeds
a threshold Q, it is the pattern. We store all possible patterns.

During pattern mining, firstly, we use correct tuples to generate keywords. Then
we submit the keyword to search engine and obtain the text. We mine the text de-
pendency from results based on hash table storing the possible patterns. Finally we
choose the phrase S whose appearance number exceeds threshold Q as the pattern.

11

Algorithm 3 Pattern Mining Algorithm

Input:
data set, Tuples, Threshold Q

Output:
patterns

1: Initialible PatternHashTable = ϕ
2: for each tuple in tuples do
3: Initialible TupleContentHash = ϕ
4: retrieve Queries and get Results
5: for each string in Results do
6: if string in TupleContentHash then
7: get start and end
8: for each substr includes [start . . . end] do
9: replace(substrvalue, flag)

10: add(PatternHashTable, substr)
11: if |substr| < Q then
12: abandon substr
13: return PatternHashTable.substr

The pseudo code is shown in Algorithm 3. At first, we input correct tuples on web
and obtain get the results(Line 2-4). Then we find the position of the attribute values
in tuples (Line 5-7). In Line 8-10, we get the substring between attribute values and
add it into the table. After that, We compare the appearance number of substrings in
table with threshold Q and obtaion the patterns which number exceeds the threshold
Q (Line 11-13). We use an example to illustrate this algorithm.

Example 3. Consider a table which contains university names and principal names. To
get the pattern, we select all the correct tuples on web i.e. “Harbin Institute Of tech-
nology + YuZhou”, “Tsinghua University + YongQiu”,“Peking University + Enge
Wang”. We obtain the results from he search engine. The results are “ . . . YuZhou
is the principal of Harbin Institute Of technology . . . ”, “. . . YongQiu is the present
principal of Tsinghua University . . . ”, “Enge Wang served as the principal of Peking
University ”. Then we extract the text which the first word and last word are from
keyword and we insert every string in the text into the PatternHashTable. Suppose
that the threshold Q is 2. We compare all the values in the table with threshold Q
and we can get the patterns “[attribute1] the principal of [attribute2]”.

We now analyze the complexity of Algorithm 2. We denote the number of the
tuples after sample as N , the number of attributes in each tuple as M and the time
spent in each web query as T , the time complexity of the algorithm is N(M2−M)T/2,
that is, O(NM2T).

Example 4. As is shown in Table 2, the process of mining text dependency in the form
is as follows. First, all tuples in the form as follows are searched on web respectively
and top 100 records are to be mined. In this example, we set threshold Q = 50. Then
we can obtain the occurrence number of phrase S = [A1] director [A2], T > Q which
result in that attribute A1, and A2 has text dependency.

Definition 4. Data cleaning based on web. According to the information retrieved
on web, we mine text dependency of attribute. Then we utilize the text dependency to
clean tuple.

12

Table 2. An Instance Of Mining Text Dependency

Num Film Director

1 The Shawshank Redemption Frank Darabont
2 The Godfather Francis Ford Coppola
3 Pulp Fiction Quentin Tarantino
4 Schindler’s List Steven Allan Spielberg
5 Fight Club David Fincher
6 One Flew Over the Cuckoo’s Nest Milos Forman
7 Inception Christopher Nolan

Table 3. an instance of data cleaning based on web

Num Film Director

1 The Shawshank Redemption Frank Darabont
2 The Godfather Francis Ford Coppola
3 Pulp Fiction Quentin Tarantino
4 Schindler’s List Steven Allan Spielberg
5 Fight Club David Fincher
6 One Flew Over the Cuckoo’s Nest Milos Forman
7 Inception Christopher Nolan
8 Se7en

Example 5. As is shown in Table 3, top seven tuples are correct and the value of
the third attribute of the eighth tuple is missing. We can get the text dependency
S = [A1] director [A2] by searching on the internet according to the top seven tuples.
Then we retrieve Query = Se7en director based on text dependency S and the
known value of the eighth tuple. Through analysis on the retrieved content, we can
get A2 = “David Finch”.

4.3 Keyword-group-based Search

In practice, the pattern could hardly be obtained. To handle such case, we develop
keyword-group-based search algorithm.

In practice, we may find that we cannot extract the pattern for some data set.
In a word, data cleaning based on pattern may not suitable for all data sets. To this
end, we develop an efficient method to solve this problem.

In this method, we firstly obtain the optimal keyword group and search it on web.
Since the attributes from the single sink graph with the largest confidence has the
closest relation with the attribute of missing value, we input source node values from
the graph and the attribute of the missing value (sink node) to the search engine. We
can get the value from the return result.

The pseudo code is shown in Algorithm 4. We first construct the keyword group
which is “sourcenodevalue + sinknodefromG∗” (Line 1). Then we construct URL
and request for website.(Line 2). After that, we extract words from the results with
the dictionary(Line 3). Finally, we compare the average distance from keyword and
select the minimum for data imputation(Line 4-6).

For example, according to the Table 1, we want to find the value of attribute Team
in t4. We generate the optimal keyword group which is {Start−End,Arena, Team}.
Therefore, we use {1966 − 1967, CivicAuditorium, Team} as the keyword to search
on web. After searching on web, we extract words in the return result by dictionary.
We select the words with closest distance with the keyword in dictionary. Note that
the dictionary is built by extracting all possible values in the column from web and
existing values in the table.

13

Algorithm 4 Keyword-group-based Search

Input:
G?, D, source node value

Output:
missing value w

1: Initialize k = source node value + sink node from G?

2: T = getPage(K)
3: extract words(T ,D)
4: avgDistance(w, K, T)
5: select min(avgDistance)
6: return missing value w

5 Experimental Study

To test the performance of the proposed approach, we conduct extensive experiments
in this section.

We implement all proposed approaches with Python and use baidu search engine.
We run our experiments on a PC with an Intel Core i5-3470 CPU and 8GB memory,
running 64bit Ubuntu 12.04. We compare state-of-art web-based data cleaning method
[8].

To test the proposed methods comprehensively, we use following data sets.
The data sets above are complete relational tables. To test the performance of

imputation, we omit values at random from the data sets and keep key attribute value
in each tuple according to the FDs. We ensure that the previous node of missing value
is imputed at least. Each proposed result is the average of 5 evaluations, that is, for
each missing value percentage (1,5,20,30,40,50 and 60%) refer to other experiments
in web-based cleaning. In each evaluation, we remove data at random positions which
means that we generate 5 incomplete tables. We then impute these incomplete tables
using our model and evaluate the performance.

Table 4. Experimental Results On Accuracy

(a) The Accuracy Of Disney Dataset

Missing ratio 1 2 3 4 5 average

5 1 1 0.75 1 1 0.95
10 1 1 1 1 0.83 0.97
20 0.91 0.89 0.92 0.89 1 0.92
30 0.87 0.93 0.95 1 0.92 0.93
40 1 0.88 0.95 1 0.78 0.92
50 1 0.82 0.85 0.89 0.92 0.90
60 0.93 0.91 0.89 0.8 0.96 0.90

(b) The Accuracy Of University Dataset

Missing ratio 1 2 3 4 5 average

5 1 1 0.75 1 1 0.95
10 1 1 1 1 0.83 0.97
20 0.91 0.89 0.92 0.89 1 0.92
30 0.87 0.93 0.95 1 0.92 0.93
40 1 0.88 0.95 1 0.78 0.92
50 1 0.82 0.85 0.89 0.92 0.90
60 0.93 0.91 0.89 0.8 0.96 0.90

1. Multilingual Disney Cartoon Table (Disney)[8]: This table contains names of 51
classical Disney cartoons in 8 different languages collected from Wikipedia.

2. University Principle Information Table (Principle): This table contains 100 Chi-
nese university and information of university includes address, city and principal
which are collected from Wikipedia.

14

0 10 20 30 40 50 60
0.88
0.9

0.92
0.94
0.96
0.98

1

MissingRatio[%]

A
cc
u
ra

rc
y

(a) Disney

0 510 20 30 40 50 60

0.8

0.9

1

MissingRatio[%]

A
cc
u
ra

rc
y

(b) University

Fig. 4. The Accuracy Of Web-based Data Imputation With Graph Model

0 510 20 30 40 50 60
0
5

10
15
20
25
30

MissingRatio[%]

T
im

e[
s]

(a) Disney

0 510 20 30 40 50 60
0

20

40

60

80

MissingRatio[%]

T
im

e[
s]

(b) University

Fig. 5. The Time Cost Of Web-based Data Imputation With Graph Model

In this experiment, we first evaluate the accuracy of our model over two data sets.
We propose tables of two datasets which contains specific results of 5 evaluations.
As is shown in Fig.4(a) and Fig.4(b), the accuracy is pretty high and because of
the random removal of value, there is no obvious relation between missing ratio and
accuracy. That is good for cleaning big data in real world because our model ensure
high accuracy of data sets regardless of the size of the data. The run time on these
two data sets are shown in Fig.5(a) and Fig.(b). We observe that the time cost is
nearly linear with the missing ratio. As mentioned above, we introduce threshold
k to restrain the data imputation for accuracy. Since there has 100% dependency
relation, the threshold k does not affect the result in the two data sets according to
our experiment.

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

Page

F
il
li
n
g
R
a
ti
o

(a) Disney

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8
0.9

1

Page

F
il
li
n
g
R
a
ti
o

(b) University

Fig. 6. The Filing Ratio Of Web-based Data Imputation With Graph Model

15

5 10 20 30 40 50 60

0.4

0.6

0.8

1

MissingRatio[%]

A
cc
u
ra

rc
y Our Model

Greedylter

Fig. 7. Comparing The Accuracy Of Our Model And Greedy Iterative

We also test the relation between FillingRatio and number of pages. Since search
engines always the most important information on the first few pages, we observe that
the FillingRatio is quite high when getting one page and increase gradually until the
FillingRatio almost levels up. The experiments with Disney and University are
shown in Fig.6(a) and Fig.6(b), respectively.

Finally, We compare the performance of our model and Greedy Iterative as is
shown in Fig.7. We find that the accuracy of GreedyIter is better than One-Pass and
Iterative, so we only propose the comparison with Greedy Iterative. It is clear that
our approach reaches better accuracy at any missing ratio. The accuracy of Greedy
Iterative drops with the increase of missing ratio. By comparison, our approach is not
affected by the missing ratio.

6 Conclusion
We present the web-based model for processing dirty data effectively and efficiently.
We have developed SDG to express FDs and CFDs. Our model has two parts for data
cleaning. First we process dirty data by internal cleaning which can reduce waste time
on web searching. We find that sometimes we can use known value to find missing
value according to the sematic relations between the attributes. Then we can find the
optimal keyword group from SDG which help us to find the missing value with high
accuracy on web. The experiments show that our model can impute missing values
more accurately for a relational datasets. In our future work, we will extend our model
to deal with multiple kinds of datasets.

Acknowledgement We thanks Dr. Zhixu Li for providing the data set of Disney.

References

1. W.W.Eckerson. DataQualityandtheBottomLine: Achieving Business Success through
a Commitment to High Quality Data. Technical report,The DataWarehousing Insti-
tute,2002.

2. Loshin, D.: The data quality business case: projecting return on investment. Informatica
(2008)

3. J. W. Grzymala-Busse and M. Hu. A comparison of several approaches to missing at-
tribute values in data mining. In Rough sets and current trends in computing, Springer,
2001.

4. M. Magnani. Techniques for dealing with missing data in knowledge discovery tasks.
Obtido http://magnanim. web. cs. unibo. it/index. html, 15(01):2007, 2004.

5. Wenfei Fan, Geerts F, Wilsen J. :Determining the Currency of Data. ACM Trans on
Database Systems(TODS),2012

6. Grzymala-Busse, J.W.: Three approaches to missing attribute values: a rough set per-
spective. Data Mining: Foundations and Practice, 2008

7. Li, J., Cercone, N.: Assigning missing attribute values based on rough sets theory. ICGC
200.

http://magnanim

16

8. Zhixu Li , Mohamed A. Sharaf , Laurianne Sitbon. A web-based approach to data
imputation. WWWJ 2014

9. Bohannon, P. , Wenfei Fan , Geerts, F. Conditional Functional Dependencies for Data
Cleaning. ICDE 2007

10. M. Ramoni and P. Sebastiani. Robust learning with missing data. Machine Learning,
45(2), 2001

11. X. F. Zhu, S. C. Zhang, Z. Jin, Z. L. Zhang, and Z. M. Xu. Missing value estimation
for mixed-attribute data sets. IEEE Transactions on Knowledge and Data Engineering,
23(1), 2011.

12. Shi H, Wang Z, Webb G I, et al. A New Restricted Bayesian Network Classifier. Advances
in Knowledge Discovery and Data Mining. Springer, 2003.

