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A Brief Comparison of Simon and Simeck

Stefan Kölbl, Arnab Roy
{stek,arroy}@dtu.dk

DTU Compute, Technical University of Denmark, Denmark

Abstract. Simeck is a new lightweight block cipher design based on
combining the design principles of the Simon and Speck block cipher.
While the design allows a smaller and more efficient hardware implemen-
tation, its security margins are not well understood. The lack of design
rationals of its predecessors further leaves some uncertainty on the secu-
rity of Simeck.
In this work we give a short analysis of the impact of the design changes
by comparing the upper bounds on the probability of differential and
linear trails with Simon. We also give a comparison of the effort of finding
those bounds, which surprisingly is significantly lower for Simeck while
covering a larger number of rounds at the same time.
Furthermore, we provide new differentials for Simeck which can cover
more rounds compared to previous results on Simon and study how to
choose good differentials for attacks and show that one can find better
differentials by building them from a larger set of trail with initially lower
probability.
We also provide experimental results for the differentials for Simon32 and
Simeck32 which show that there exist keys for which the probability of
the differential is significantly higher than expected.
Based on this we mount key recovery attacks on 19/26/33 rounds of
Simeck32/48/64, which also give insights on the reduced key guessing
effort due to the different set of rotation constants.
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1 Introduction

Simeck is a family of lightweight block ciphers proposed in CHES’15 by Yang,
Zhu, Suder, Aagaard and Gong [13]. The design combines the Simon and Speck
block ciphers proposed by NSA [4], which leads to a more compact and efficient
implementation in hardware. The block cipher Simon is built by iterating a very
simple round function which uses bitwise AND and rotation while the block
cipher Speck uses modular addition as non-linear operations. The designers of
Simeck chose a different set of rotation constants from Simon to construct the
round function.

The efficiency of Simon and Speck on hardware and software platform has
a natural appeal to use similar design principles for constructing efficient primi-
tives. The designers of Simon and Speck do not provide rationales for the orig-
inal choices apart from implementation aspects. These modifications are likely



to have an impact on the security margins, which often are already small for
lightweight designs and can be a delicate issue. Hence it is important to under-
stand the effect of the parameter change on the security of Simon like design.

The Simon block cipher family has been studied in various paper [1, 2, 5, 9,
10, 12] and the attacks covering the most rounds are based on differential and
linear cryptanalysis, which therefore will also be the focus of this work. However
very few analyses [7] was done to study the choice of parameters for Simon and
Speck and their effect on the security of these block ciphers.

Our Results In this paper we give a first analysis on the impact of these
design changes by comparing the bounds for differential and linear trails with
the corresponding variants of Simon. An unexpected advantage for Simeck is,
that it takes significantly less time to find those while also covering more rounds
(see Table 1). Additionally we investigate strategies to find differentials which
have a high probability and are more suitable for efficient attacks.

Surprisingly, we can find differentials with higher probability for Simeck32
by not using the input and output difference from the best differential trails. Fur-
thermore, we also provide new differentials which cover 4 and 5 additional rounds
for Simeck48 and Simeck64 respectively which also have a slightly higher prob-
ability compared to previous results on Simon.

We verified the estimated probability with experiments for both Simon32
and Simeck32 to confirm our model and also noticed that for some keys a
surprisingly large number of valid pairs can be found.

This is followed by key-recovery attacks for reduced round versions of Simeck
(see Table 6). These attacks are similar to previous work [5] done on Simon and
give insight into the lower complexity for the key recovery process for Simeck
as we need to guess fewer key bits.

Table 1: A comparison between the number of rounds for which upper bounds on
the probability of differential and linear trails exist, the probability of differen-
tials utilized in attacks and the best differential attacks on Simon and Simeck.
Results contributed by this work are marked in bold.

Cipher Rounds Upper Bounds Differentials Key Recovery
differential linear Rounds Pr(α −→ β)

Simon32/64 32 32 32 13 2−28.79 [5] 21 [11]
Simeck32/64 32 32 32 13 2−27.28 22 [8]

Simon48/96 36 19 20 16 2−44.65 [10] 24 [11]
Simeck48/96 36 36 36 20 2−43.65 26 [8]

Simon64/128 44 15 [7] 17 21 2−60.21 [10] 29 [11]
Simeck64/128 44 40 41 26 2−60.02 35 [8]



2 The Simeck Block Cipher

Simeck2n is a family of block ciphers with n-bit word size, where n = 16, 24, 32.
Each variant has a block size of 2n and key size of 4n giving the three variants
of Simeck: Simeck32/64, Simeck48/96 and Simeck64/128. As for each block
size there is only one key size we will omit the key size usually.

S5

S1

ki

Fig. 1: The round function of Simeck.

The block cipher is based on the Feistel construction and the round function
f is the same as in Simon apart from using (5, 0, 1) for the rotation constants (as
depicted in Figure 1). The key-schedule on the other hand is similar to Speck,
reusing the round function to update the keys. The key K is split into four words
(t2, t1, t0, k0) and the round keys k0, . . . , kr−1 are given by:

ki+1 = ti

ti+3 = ki ⊕ f(ti)⊕ C
(1)

3 Preliminaries

Differential cryptanalysis is a powerful tool for analyzing block ciphers using a
chosen plaintext attack. The idea is to find a correlation between the difference
of a pair of plaintexts and the corresponding pair of ciphertexts. Resistance
to differential cryptanalysis is an important design criteria but it is difficult,
especially for designs like Simon, to proof the resistance against it.

Definition 1. A differential trail Q is a sequence of difference patterns

Q = (α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr). (2)

In general, as the key is unknown to an attacker, we are interested in the
probability that a random pair of inputs follows such a differential trail and the
goal for the attacker is to find a correlation between input and output difference
with high probability.



Definition 2. The probability of a differential trail Q is defined as

Pr(α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr) =

r−1∏
t=0

Pr(αt → αt+1) (3)

and gives the probability that a random input follows the differential trail. The
last equality holds if we assume independent rounds.

In most attack scenarios we are not interested in the probability of a differ-
ential trail, as we are only interested in the input difference α0 and the output
difference αr, but not what happens in between.

Definition 3. The probability of a differential is the sum of all r round differ-
ential trails

Pr(α0
f−→ αr) =

∑
α1,...,αr−1

(α0
f0−→ α1

f1−→ · · ·αr−1
fr−1−−−→ αr) (4)

which have the same input and output difference.

4 Analysis of Simon and Simeck

In [7] the differential and linear properties of Simon were studied, including
variants using a different set of rotation constants. Following up on this work,
we can use the same methods to analyze the round function of Simeck. This
allows us to find lower bounds for the probability of a differential trail resp.
square correlation of a linear trail for a given number of rounds.

4.1 Diffusion

An important criteria for the quality of a round function in a block cipher is the
amount of diffusion it provides, i.e. how many rounds r it takes until each bit
at the input effects all bits of the output. For Simon this was already studied
in [7] for the whole parameter set and we only explicitly state the comparison
to Simeck here in Table 2.

Table 2: Number of rounds required for full diffusion.

Wordsize 32-bit 48-bit 64-bit

Simon 7 Rounds 8 Rounds 9 Rounds
Simeck 8 Rounds 9 Rounds 11 Rounds



4.2 Bounds on the best differential trails

We carried out experiments for the parameter set of Simeck using CryptoSMT1

to find the optimal differential and linear trails for Simeck32, Simeck48 and
Simeck64 and compare it with the results on Simon. The results of this experi-
ment are given in Figure 2. The bounds on the square correlation for linear trails
are given in the Appendix.
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Fig. 2: Lower bounds on the probability of the best differential trails for variants
of Simon and Simeck. For the different variants of Simeck the bounds are the
same.

While the bounds for Simon32 and Simeck32 are still comparable we noticed
a significant difference for the larger variants. While the required number of
rounds for Simon48, such that the probability of the best trail is less than 2−48,
is 16, Simeck48 achieves the same property only after 20 rounds. It is also
interesting to note that the bounds for the different word sizes of Simeck are
the same, which is not the case for Simon.

In our experiments we noticed that the different set of rotation constants
plays a huge role in the running time of the SMT solver. For instance finding
the bounds in Figure 2 took 51 hours for Simon32 and 10 hours for Simeck322.
Especially for larger block sizes it allows us to provide bounds for a significant
larger number of rounds including full Simeck48. For Simon64 computing the
bounds up to 15 rounds takes around 19 hours, while the same process only
1 CryptoSMT https://github.com/kste/cryptosmt Version: 70794d83
2 Using Boolector 2.0.1. running on an Intel Xeon X5650 2.66GHz 48GB RAM (1
core).



takes around 30 minutes for Simeck64. We computed the bounds for Simeck64
up to round 40 in around 53 hours.

4.3 Differential effect in Simon and Simeck

As noted in previous works Simon shows a strong differential resp. linear hull
effect, which invalidates an often made assumption that the probability of the
best trail can be used to estimate the probability of the best differential. There-
fore bounds on differential and linear trails have to be treated with caution. The
choice of constants for Simon-like round functions also plays a role in this as
shown in [7].

One approach to find good differentials is to first find the best trail for a
given number of rounds of Simeck using CryptoSMT [6] and then find a large
set of trails with the same input and output difference. However, as we will see
later this will not always give the highest probability differential. The results of
these experiments are summarized in Table 3.

If we compare those with previous results on Simon we can cover more
rounds. The best previous differential attack by Wang, Wang, Jia and Zhao [11]
utilizes a 13-round differential for Simon32, a 16-round differential for Simon48
and a 21-round differential for Simon64. We show that with the same or slightly
better probability (Table 1) differentials can be found for a higher number of
rounds for both Simeck48 and Simeck64.

Table 3: Overview of the differentials we found for Simeck which can likely be
used to mount attacks. The probability is given by summing up all trails up to
probability 2max taking a time T .

Cipher Rounds Q = (α→ β) log2(p) max T

Simeck32 13 (8000, 4011)→ (4000, 0) −27.28 −49 17h
Simeck48 20 (20000, 450000)→ (30000, 10000) −43.65 −98 135h
Simeck48 20 (400000, e00000)→ (400000, 200000) −43.65 −74 93h
Simeck48 21 (20000, 470000)→ (50000, 20000) −45.65 −100 130h
Simeck64 25 (2, 40000007)→ (40000045, 2) −56.78 −90 110h
Simeck64 26 (0, 4400000)→ (8800000, 400000) −60.02 −121 120h

While we let our experiments run for a few days, the probability only im-
proves marginally after a short time. For instance, for Simeck32 and Simeck48
the estimates after three minutes are only 2−2 lower than the final results and
after two hours the improvements are very small. Some additional details on the
differential utilized in the key-recovery attack on Simeck48 can be found in the
Appendix 9, including the exact running times to obtain the results.



4.4 Choosing a good differential for attacks

For an attack we want a differential with a high probability, but also the form
of the input and output difference can have an influence on the resulting attack
complexity. Ideally we want differentials with a sparse input/output difference
resp. of the form (x, 0)→ (0, x). When expanding such a differential it leads to
a truncated differential with fewer unknown bits which reduces the complexity
in the key recovery part of the attack as will be seen later.

The best differential trail of the form (x, 0) −→ (0, x) only has a probability
of 2−42 for Simeck32 resp. 2−47 for Simon32. The corresponding differential
improves the probability to ≈ 2−36.7, but is still unlikely to be useful for an at-
tack. If we relax the restriction and allow differentials of the form (x, x) −→ (0, x)
we can find differential trails with a probability of 2−38 (the same bound exists
for Simon32). However, the corresponding differentials still seem impractical for
an attack. As both this approaches fail for finding good differentials we do not
impose any restrictions on the form of the input resp. output difference of the
differentials.

Table 4: Number of differential trails for 13-round Simeck32.

Pr(α f13
−−→ β) Trails

2−32 640
2−33 128
2−34 31616
2−35 49152

We looked at all 40 rotation invariant differentials constructed from the best
differential trail with probability 2−32 for Simeck32 (see Table 4). There are only
two possible distributions for the trails contributing to the differential, which we
denote as Type 1 and Type 2 (see Figure 3 and Table 8). There are 8 trails of
Type 1, all with at least one word having 0 difference, and the corresponding
differential gives a slightly higher probability. For a list of these differentials see
Table 7.

However, by expanding our search we could find a better differential. By not
using the optimal differential trail we can find the differential (8000, 4011) −→
(4000, 0) which has a higher probability even though the best trail contribut-
ing only has a probability of 2−36. This is due to the higher number of trails
contributing to this specific differential (see Type 3 in Figure 3 respectively
Table 8).

For 20-round Simeck48 the best trails with pattern only has a probability
of 2−62 and for (x, x)→ (0, x) it is 2−54. The corresponding differentials are not
usable for an attack in this case. Therefore, we again do not impose any of these
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Fig. 3: Distribution of trails contributing to the differentials for 13 rounds of
Simeck32 and the accumulated probability by summing up all trails up to a
specific probability.

restrictions and use the 20-round trails with highest probability. For Simeck48
there are 768 such trails with a probability of 2−50 (32 rotation invariant) and
we choose the one where the input and output difference is most sparse.

For Simeck64 the best differentials we found are also based on the best trail
and given in Table 3.

4.5 Experimental Verification

While the previous approach can give a good estimate for the probability one can
expect for a differential, it is not entirely clear how good these approximations
are. As both Simon32 and Simeck32 allow us to run experiments on the full
codebook we can verify the probabilities at least for these variants. For a random
function we expect that the number of valid pairs are a Poisson distribution.

Definition 4. Let X be a Poisson distributed random variable representing the
number of pairs (a, b) with values in Fn2 following a differential Q = (α f−→ β),
that means f(a)⊕ f(a⊕ α) = β, then

Pr(X = l) = 1
2(2np)l e

−(2np)

l! (5)

where p is the probability of the differential.

We ran experiments for both Simon32 and Simeck32 reduced to 13 rounds
by encrypting the full code book for a large number of random keys. The differ-
ential we used for Simon32 is (0, 40) −→ (4000, 0), which is also used in the best
attack so far [11] and has an estimated probability of 2−28.56. The expected num-
ber of valid pairs is E(X) ≈ 5.425. We encrypted the full code book using 202225
random master keys and counted the number of unique pairs. The full distribu-
tion is given in Figure 4. The distribution follows the model in Equation 5, but
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we observe some unusual high number of pairs for some keys. For example the
key K = (k0, k1, k2, k3) = (8ec1, 1cf8, e84a, cee2) gives 1082 pairs following the
differential. If 13 rounds of Simon32 would behave like a random function, this
would only occur with an extremely low probability Pr(X = 1082)� 2−1000.

For Simeck32 we used the new differential (8000, 4011) −→ (4000, 0) with
E(X) ≈ 13.175. Again, we encrypt the full code book for 134570 random keys
and the distribution follows our model as can be seen in Figure 5. Similar, to
Simon for some keys a surprisingly large number of valid pairs can be found.
In both cases our method provides a good estimate for the probability of a
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differential and we can use Equation 5 for estimating the number of pairs.



5 Recovering the Key

Table 5: Truncated differential obtained by extending (400000, e00000) 20−→
(400000, 200000) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗

−5 ***0***0**************** ************************ 22 24
−4 ***000000***0*********** ***0***0**************** 17 22
−3 ***00000000000***0****1* ***000000***0*********** 11 17
−2 ***0000000000000000***01 ***00000000000***0****1* 6 11
−1 111000000000000000000000 ***0000000000000000***01 0 6
0 010000000000000000000000 111000000000000000000000 0 0

20 rounds

20 010000000000000000000000 001000000000000000000000 0 0
21 1*100000000000000000*000 010000000000000000000000 2 0
22 ***000000000000*000***01 1*100000000000000000*000 7 2
23 ***0000000*000***0****1* ***000000000000*000***01 12 7
24 ***00*000***0*********** ***0000000*000***0****1* 18 12
25 ***0***0**************** ***00*000***0*********** 22 18
26 ************************ ***0***0**************** 24 22

In the following subsection we describe the key recovery attack on Simeck48
based on the differential given in Table 3. Extending this differential both in
forward and backward directions gives the truncated differential shown in Table 5
which will be used in the attack. The input difference to round r is denoted as
∆r and kr denotes the round key for round r. The difference in the left resp.
right part of the state we denote as ∆Lr and ∆Rr.



5.1 Attack on 26-round Simeck48

Our attack on 26-round Simeck48 uses four 20-round differentials in a similar
way as in [5]. Let Di denote the differentials

D1 : (400000, e00000)
f20

−−→ (400000, 200000)

D2 : (800000, c00001)
f20

−−→ (800000, 400000)

D3 : (000004, 00000e)
f20

−−→ (000004, 000002)

D4 : (000008, 00001c)
f20

−−→ (000008, 000004)

each having probability ≈ 2−44. We add 4 rounds at the end and 2 rounds on
top and obtain the truncated difference (see Table 5). The truncated difference
at round 0 for each differential is given by

***0000000000000000***01, ***00000000000***0****1*

**0000000000000000***01*, **00000000000***0****1**

000000000000000***01***0, 0000000000***0****1****0

00000000000000***01***00, 000000000***0****1****00 .

By identifying the unknown and known bit positions in these differentials we
can construct a set of 230 plaintext pairs where the bit positions corresponding
to the aligned 0s in the truncated differentials are fixed to an arbitrary value for
all plain-texts. By guessing 6 round key bits we can also identify the 231 pairs
satisfying the difference (∆L2, ∆R2) after the first two round encryption. Hence
we can get 4 sets of 231 pairs of plain-texts where the difference is satisfied after
the first two rounds of encryption. By varying the fixed bit positions we can get
4 sets of 246 pairs of plain-texts, each satisfying the difference after two rounds
for each key guess.

Filtering the pairs First we encrypt the 246 plaintext pairs. Then we unroll
the last round and use the truncated differential to verify if a pair is valid.
This is possible due to the last key addition not having any influence on the
difference (∆L25, ∆R25). As there are 12 + 17 bits known in this round we will
have 246−29 = 217 plaintext pairs left.

Key guessing In the key guessing phase we guess the necessary round key bits
(or linear combination of round key bits) to verify the difference at the beginning
of round 22, i.e. ∆22. For each differential we counted that a total of 30 round
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∆L25 ***0000000*000***0****1* 12
∆R25 ***000000000000*000***01 17

For each pair (∆L′,∆R′) obtained:

1. Compute ∆R′25 = f(∆R′26)⊕∆L26
3.

2. Check if ∆L′25 = ∆L25 and
∆R′25 = ∆R25.

Fig. 6: Filtering for the correct pairs which we use in the key guessing part.

key bits and linear combinations of round key bits are necessary to be guessed
during this process. The required key bits DK

1 for D1 are

K23 = {2, 17}
K24 = {2, 3, 4, 8, 12, 16, 17, 18, 22}
K25 = {1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23}

We describe this process for one round in Figure 7. An interesting difference
to Simon in the key guessing part is that the required number of key guesses is
much lower, as many bits required to guess coincide when partially recovering
the state which can reduce the overall complexity. This is always the case if one
of the rotation constants is zero, but similar effects can occur with other choices
as well.

For the key guessing part, we keep an array of 230 counters and increment a
counter when it is correctly verified with the difference after partial decryption
of the cipher-text pairs. For each differential we can verify the remaining 19(=
48 − 29) bits with the key guessing process. For the 230 counters we expect
to have (217 × 230)/219 = 228 increments. The probability of a counter being
incremented is 228/230 = 2−2. Since 4 correct pairs are expected to be among
the filtered pairs, the expected number of counters having having at least 4
increments is

230 · (1− Pr(X < 4)) ≈ 217.13. (6)

We observe that there are 18 common key guesses required for the differentials
D1 and D2. Hence combining the corresponding array of counters T1 and T2
we can get 217.13 × 217.13/218 = 216.26 candidates for 42 bits. Continuing in
the same way we observe that |DK3 ∩ (DK1 ∪ DK2 )| = 24, hence we get 216.26 ×
217.13/224 = 29.39 candidates for 48 bits. Using D4 this can be further reduced,
as |DK4 ∩ (DK1 ∪DK2 ∪DK3 )| = 28 we expect 29.39 × 217.13/228 ≈ 2−1.5 candidates
for 50 bits. For the remaining 46 bits we perform an exhaustive search.
3 The key has no influence on the input to the non-linear function in the last round.



Complexity The complexity of the attack is dominated by the key recovery
process. For the partial decryption process we need 217× 230× 4

26 ≈ 245 encryp-
tions, hence the complexity of one key recovery attack is 254. This key recovery
is performed for each differential and each 26 round key guesses of the initial
rounds. Hence the overall complexity of the attack is 254 × 26 × 4 = 262.

We expect in our attack that at least 4 out of 246 pairs follow our differential,
which has probablity ≥ 2−43.65, for the correct key. Therefore we get a success
rate of

1− Pr(X < 4) ≈ 0.75 (7)
However, in practice this will be much higher as we only use a lower bound on
the probability of the differential.

5.2 Key Recovery for 19-round Simeck32

For Simeck32 we also use 4 differentials

D1 : (8000, 4011)
f13

−−→ (4000, 0000)

D2 : (0001, 8022)
f13

−−→ (8000, 0000)

D3 : (0008, 0114)
f13

−−→ (0004, 0000)

D4 : (0010, 0228)
f13

−−→ (0008, 0000)

each having probability ≈ 2−28 (for the truncated differences see Table 10). We
add two rounds at the top of the 13-round differential and identify a set of 230

pairs of plain-texts each satisfying the specific difference (∆L2, ∆R2) after the
first two round encryption. Identifying a set of plaintext pairs requires to guess
6 key bits.

∆L24 ∆R24

S5

S1

k24

k25

∆R25

∆z24 ∆R25 ***000000000000*000***01
S5(∆R25) 0000000000*000***01***00
∆z24 ***0000000*000***0****0*
∆R24 1*100000000000000000*000

Key filtering:

1. Find bits s.t. ∆z24 = ∗ and ∆R24 6= ∗.
2. Guess corresponding bits in k25.
3. Check ∆z24 = ∆R24 ⊕ S1(R25)⊕∆L25.

Fig. 7: Outline of the process of key guessing and filtering for a single round.



Filtering We can filter some wrong pairs by unrolling the last round and veri-
fying the truncated difference (with 18 known bits) at the beginning of the last
round. This will leave us with 230−18 = 212 pairs.

Key guessing We counted that 22 round key bits are necessary to guess for
verifying the difference at the end of round 14. The required key bits DK

1 for D1
are

K16 = {3, 9}
K17 = {2, 3, 4, 8, 9, 10, 14}
K18 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15}

We use the same method as described for Simeck48 during this phase. Out
of the filtered pairs we expect to get at least 4 correct pairs (those follow the
13-round differential). Hence the number of candidates for 22 key bits are ≈ 29.1.
The number of common key bits amongst the differentials is given by

DK
1 ∩ DK

2 = 14
DK

3 ∩ (DK
1 ∪ DK

2 ) = 16
DK

4 ∩ (DK
1 ∪ DK

2 ∪ DK
3 ) = 20

and we expect to 1 key candidate for 38 bits. For the remaining 26 bits of the
last four round keys we perform exhaustive search.

Complexity The complexity of the partial decryption (for the last 4 rounds)
is 212 × 222 × 4

19 ≈ 232 which is the dominating part of the complexity. Since
we perform the key recovery for each differential and for each 6-bit round key
guesses of the first two rounds the overall complexity of the attack is 232+8 = 240.

5.3 Key Recovery for 33-round Simeck64

We use the following 4 differentials for Simeck64

D1 : (0, 04400000)
f26

−−→ (08800000, 00400000)

D2 : (0, 44000000)
f26

−−→ (88000000, 04000000)

D3 : (0, 40000004)
f26

−−→ (80000008, 40000000)

D4 : (0, 00000044)
f26

−−→ (00000088, 00000004)

each having probability ≈ 2−60 (for the truncated differences see Table 11). We
add two rounds at the top of the 26 round differential and identify a set of 262

pairs of plain-texts by guessing 4 round key bits from the first two rounds.



Filtering wrong pairs We add 5 round truncated difference at the end of the
26 round differential. The last round may be unrolled to verify the difference
at the beginning of the last round. This helps to filter some wrong pairs using
the known bits of the truncated difference and after filtering we are left with
262−30 = 232 pairs of plaintext out of which we expect 22 correct pairs (those
followed 26 round differential).

Key guessing In this phase we guess the necessary key bits from the last four
rounds to verify the difference at the beginning of round 28. We counted that
76 key bits are necessary to guess for verifying (∆L28, ∆R28). The required key
bits DK

1 for D1 are

K29 = {0, 18, 22, 28}
K30 = {0, 1, 5, 13, 17, 18, 19, 21, 22, 23, 27, 28, 29, 31}
K31 = {0, 1, 2, 4− 6, 8, 10, 12− 14, 16− 24, 26− 31}
K32 = {0− 31}

Out of the filtered pairs we expect to get at least 4 correct pairs (those that
follow the 26-round differential). Hence the number of candidates for 76 key bits
are ≈ 263.12. The number of common key bits amongst the differentials is given
by

DK
1 ∩ DK

2 = 66
DK

3 ∩ (DK
1 ∪ DK

2 ) = 70
DK

4 ∩ (DK
1 ∪ DK

2 ∪ DK
3 ) = 64

By combining all the four differentials we expect to get 252 key candidates for 104
bits. For the remaining 24 bits of the last four round keys we perform exhaustive
search.

Complexity The complexity of the partial decryption (for last 4 rounds) is
232 × 276 × 5

33 ≈ 2105 which is the dominating part of the complexity. Since we
perform the key recovery for each differential and for each 6-bit round key guesses
of the first two rounds the overall complexity of the attack is 2105+10 = 2115.

6 Conclusion and Future Work

We gave a brief overview of the Simeck and Simon block cipher and their re-
sistance against differential and linear cryptanalysis. From our comparison we
can see that statistical attacks can cover a significant larger number of rounds
for Simeck48 and Simeck64. Our key recovery attacks still have a significant
margin compared to generic attacks (see Table 6) in regard to time complex-
ity, therefore additional rounds can be covered using the dynamic key-guessing
approach at the costs of a higher complexity.



Table 6: Comparison of the attacks on Simeck.

Cipher Rounds Time Data Memory Type

Simeck32/64 20/32 262.6 232 256 Imp. Differential [13]
Simeck32/64 22/32 257.9 232 − Diff.(dynamic key-guessing) [8]
Simeck32/64 18/32 263.5 231 − Linear [3]
Simeck32/64 19/32 240 231 231 Differential (Section 5.2)

Simeck48/96 24/36 294.7 248 274 Imp. Differential [13]
Simeck48/96 28/36 268.3 246 − Diff.(dynamic key-guessing) [8]
Simeck48/96 24/36 294 245 − Linear [3]
Simeck48/96 26/36 262 247 247 Differential (Section 5.1)

Simeck64/128 25/44 2126.6 264 279 Imp. Differential [13]
Simeck64/128 34/44 2116.3 263 − Diff.(dynamic key-guessing) [8]
Simeck64/128 35/44 2116.3 263 − Diff.(dynamic key-guessing) [8]
Simeck64/128 27/44 2120.5 261 − Linear [3]
Simeck64/128 33/44 2115 263 263 Differential (Section 5.3)

This also shows that the impact of small design changes in Simon-like block
ciphers can be hard to estimate and requires a dedicated analysis, as the under-
lying design strategy is still not well understood. Especially for variants with a
larger block size it is difficult to find lower bounds or estimate the effect of dif-
ferentials. An open question is whether better differentials exist for both Simon
and Simeck which give a surprisingly higher probability as in the case of our
differential for Simeck32. This effect could be more significant for larger word
sizes and lead to improved attacks.

In this sense Simeck also has an unexpected advantage over Simon and
Speck, as the analysis is simpler and requires less computational effort with
our approach. This is a property that is especially important in the light of
not having cryptanalytic design documentation, nor design rationales for the
constants regarding security available by the designers of Simon and Speck.

For both Simon32 and Simeck32 reduced to 13 rounds we observed that for
some keys a surprisingly large number of valid pairs can be found. This gives an
interesting open problem in classifying the keys which give a significant higher
probability for a given differential.
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A Bounds for Linear trails
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Fig. 8: Bounds for the best linear trails for variants of Simon and Simeck. For
the different variants of Simeck the bounds are the same.

Table 7: Classification of all the 40 rotation invariant 13-round differentials for
Simeck32.

Type 1

(0, 22) f13
−−−→ (2a, 1) (4, 8a8) f13

−−−→ (88, 0) (4, 8e8) f13
−−−→ (88, ) (0, 11) f13

−−−→ (1d, 8)

(0, 11) f13
−−−→ (115, 8) (0, 88) f13

−−−→ (8e8, 4) (4, a8) f13
−−−→ (88, 0) (1, 3a) f13

−−−→ (22, 0)

Type 2

(4, 8a) f13
−−−→ (aa, 4) (4, 8a) f13

−−−→ (ae, 4) (1, a8) f13
−−−→ (228, 1) (4, aa) f13

−−−→ (a, 4)

(4, 8e) f13
−−−→ (aa, 4) (4, 2e) f13

−−−→ (a, 4) (4, 2e) f13
−−−→ (e, 4) (2, 57) f13

−−−→ (5, 2)

(2, 5) f13
−−−→ (55, 2) (4, 8e) f13

−−−→ (2a, 4) (1, 2a8) f13
−−−→ (228, 1) (2, 7) f13

−−−→ (55, 2)

(4, aa) f13
−−−→ (8e, 4) (4, ae) f13

−−−→ (e, 4) (4, 8a) f13
−−−→ (2e, 4) (2, 15) f13

−−−→ (5, 2)

(2, 7) f13
−−−→ (17, 2) (4, e) f13

−−−→ (ae, 4) (4, ae) f13
−−−→ (8e, 4) (4, 8a) f13

−−−→ (2a, 4)

(4, e) f13
−−−→ (2a, 4) (4, a) f13

−−−→ (2a, 4) (4, 2e) f13
−−−→ (8a, 4) (4, 2a) f13

−−−→ (8e, 4)

(4, a) f13
−−−→ (ae, 4) (4, 8e) f13

−−−→ (ae, 4) (1, 28) f13
−−−→ (b8, 1) (4, 8e) f13

−−−→ (2e, 4)

(1, b8) f13
−−−→ (238, 1) (4, ae) f13

−−−→ (8a, 4) (2, 15) f13
−−−→ (7, 2) (1, 2a8) f13

−−−→ (38, 1)



Table 8: Distribution of the trails for the different type of differentials in 13-round
Simeck32.

log2 Pr(Q) Type 1 Type 2 Type 3

−32 1 1 0
−33 0 0 0
−34 9 7 0
−35 6 5 0
−36 38 24 8
−37 44 28 2
−38 124 71 87
−39 166 96 79
−40 367 210 560
−41 521 308 868
−42 1014 625 2911
−43 1566 1002 5170
−44 2629 1752 12485
−45 4232 2975 22007
−46 6448 5101 43969
−47 9620 8234 75212
−48 13952 14439 133341
−49 19425 24653 220359∑

2−27.88 2−28.43 2−27.29

Table 9: Number of trails and time to find them for the Simeck48 differential
(400000, e00000) f20

−−→ (400000, 200000).

log2 Pr(Q) #Trails Pr(Differential) T

−50 1 −50.0 3.72s
−51 0 −50.0 6.9s
−52 12 −48.0 19.78s
−53 6 −47.7520724866 31.77s
−54 80 −46.7145977811 42.62s
−55 68 −46.4301443917 55.68s
−56 413 −45.804012702 77.58s
−57 484 −45.5334136623 104.69s
−58 1791 −45.1367816524 180.02s
−59 2702 −44.8963843436 265.5s
−60 7225 −44.6271009401 528.39s
−61 12496 −44.4289288164 1068.95s
−62 28597 −44.2312406041 2603.59s
−63 52104 −44.0720542548 6146.77s
−64 111379 −43.9193398907 19276.9s
−65 207544 −43.7902765446 41938.08s
−66 238939 −43.7209043818 70720.98s
−67 228530 −43.6888725691 96657.81s
−68 229018 −43.6730860168 123706.38s
−69 276314 −43.6636455186 160688.8s
−70 271192 −43.6590352669 197354.41s
−71 269239 −43.6567522016 232641.34s
−72 267563 −43.6556191172 271083.28s
−73 266716 −43.6550547005 308072.68s
−74 227971 −43.6548135551 336027.17s



Table 10: Truncated differential for Simeck32 obtained by extending
(8000, 4011) f13

−−→ (4000, 0) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗

−4 ***0************ **************** 15 16
−3 **000***0****1** ***0************ 11 15
−2 0*0000*000***01* **000***0****1** 6 11
−1 0100000000010001 0*0000*000***01* 0 6
0 1000000000000000 0100000000010001 0 0

13 rounds

13 0100000000000000 0000000000000000 0 0
14 1*0000000000*000 0100000000000000 2 0
15 **00000*000**001 1*0000000000*000 5 2
16 ***000**00***01* **00000*000**001 9 5
17 ***00***0******* ***000**00***01* 13 9
18 ***0************ ***00***0******* 15 13
19 **************** ***0************ 16 15

Table 11: Truncated differential for Simeck64 obtained by extending
(0, 4400000) f26

−−→ (8800000, 400000) in both directions until all bits are unknown.

Round ∆L ∆R ∗ ∗

−8 *************0****************** ******************************** 31 32
−7 **********0**00***0************* *************0****************** 28 31
−6 **********00*000**00***0******** **********0**00***0************* 24 28
−5 **********0000000*000**00***0*** **********00*000**00***0******** 19 24
−4 *0****1***000000000000*000**00** **********0000000*000**00***0*** 13 19
−3 *00***01**00000000000000000*000* *0****1***000000000000*000**00** 8 13
−2 *000**001*0000000000000000000000 *00***01**00000000000000000*000* 4 8
−1 00000100010000000000000000000000 *000**001*0000000000000000000000 0 4
0 00000000000000000000000000000000 00000100010000000000000000000000 0 0

26 rounds

26 00001000100000000000000000000000 00000000010000000000000000000000 0 0
27 000**001*1000000000000000000000* 00001000100000000000000000000000 4 0
28 00***01***0000000000000000*000** 000**001*1000000000000000000000* 9 4
29 0****1****00000000000*000**00*** 00***01***0000000000000000*000** 14 9
30 **********000000*000**00***0**** 0****1****00000000000*000**00*** 20 14
31 **********0*000**00***0********* **********000000*000**00***0**** 25 20
32 ************00***0************** **********0*000**00***0********* 29 25
33 ************0******************* ************00***0************** 31 29
34 ******************************** ************0******************* 32 31


