Skip to main content

HINE: Heterogeneous Information Network Embedding

  • Conference paper
  • First Online:
Book cover Database Systems for Advanced Applications (DASFAA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10177))

Included in the following conference series:

Abstract

Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, we propose an HIN embedding model (HINE), which consists of local and global semantic embedding. Local semantic embedding aims to incorporate entity type information via embedding the local structures and types of the entities in a supervised way. Global semantic embedding leverages multi-hop relation types among entities to propagate the global semantics via a Markov Random Field (MRF) to impact the embedding vectors. By doing so, HINE is capable to capture both local and global semantic information in the embedding vectors. Experimental results show that HINE significantly outperforms state-of-the-art methods.

We are grateful to Tengjiao Wang for invaluable guidance, support and contribution in regard to this research and resulting paper. This research is supported by the Natural Science Foundation of China (Grant No. 61572043), and the National Key Research and Development Program (Grant No. 2016YFB1000704).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: WWW, pp. 37–48 (2013)

    Google Scholar 

  2. Al Shalabi, L., Shaaban, Z., Kasasbeh, B.: Data mining: a preprocessing engine. J. Comput. Sci. 2(9), 735–739 (2006)

    Article  Google Scholar 

  3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148. Springer, US (2011)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global structural information. In: CIKM, pp. 891–900 (2015)

    Google Scholar 

  6. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016)

    Google Scholar 

  7. Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: KDD, pp. 119–128 (2015)

    Google Scholar 

  8. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  9. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. JMLR 9, 1871–1874 (2008)

    MATH  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD (2016)

    Google Scholar 

  12. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL, pp. 687–696 (2015)

    Google Scholar 

  13. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: AAAI, pp. 985–991 (2016)

    Google Scholar 

  14. Ley, M.: DBLP: some lessons learned. VLDB 2, 1493–1500 (2009)

    Google Scholar 

  15. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)

    Article  Google Scholar 

  16. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: EMNLP, pp. 705–714 (2015)

    Google Scholar 

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)

    MATH  Google Scholar 

  19. Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: Advances in Neural Information Processing Systems, pp. 121–128 (2008)

    Google Scholar 

  20. Meng, C., Cheng, R., Maniu, S., Senellart, P., Zhang, W.: Discovering meta-paths in large heterogeneous information networks. In: WWW, pp. 754–764 (2015)

    Google Scholar 

  21. Ou, M., Cui, P., Pei, J., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: KDD (2016)

    Google Scholar 

  22. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI, pp. 1895–1901 (2016)

    Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD, pp. 701–710 (2014)

    Google Scholar 

  24. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  25. Sun, Y., Han, J., Gao, J., Yu, Y.: iTopicModel: information network-integrated topic modeling. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 493–502 (2009)

    Google Scholar 

  26. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. In: VLDB, 992–1003 (2011)

    Google Scholar 

  27. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  28. Tang, L., Liu, H.: Scalable learning of collective behavior based on sparse social dimensions. In: CIKM, pp. 1107–1116 (2009)

    Google Scholar 

  29. Tang, L., Liu, H.: Leveraging social media networks for classification. In: DMKD, pp. 447–478 (2011)

    Google Scholar 

  30. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  31. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685 (2009)

    Google Scholar 

  32. Wang, C., Duan, N., Zhou, M., Zhang, M.: Paraphrasing adaptation for web search ranking. In: ACL, pp. 41–46 (2013)

    Google Scholar 

  33. Wang, C., Song, Y., El-Kishky, A., Roth, D., Zhang, M., Han, J.: Incorporating world knowledge to document clustering via heterogeneous information networks. In: KDD, pp. 1215–1224 (2015)

    Google Scholar 

  34. Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Knowsim: a document similarity measure on structured heterogeneous information networks. In: ICDM, pp. 1015–1020 (2015)

    Google Scholar 

  35. Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Text classification with heterogeneous information network kernels. In: AAAI, pp. 2130–2136 (2016)

    Google Scholar 

  36. Wang, C., Song, Y., Roth, D., Wang, C., Han, J., Ji, H., Zhang, M.: Constrained information-theoretic tripartite graph clustering to identify semantically similar relations. In: IJCAI, pp. 3882–3889 (2015)

    Google Scholar 

  37. Wang, C., Song, Y., Roth, D., Zhang, M., Han, J.: World knowledge as indirect supervision for document clustering. TKDD 11(2), 13:1–13:36 (2016)

    Google Scholar 

  38. Wang, C., Sun, Y., Song, Y., Han, J., Song, Y., Wang, L., Zhang, M.: Relsim: relation similarity search in schema-rich heterogeneous information networks. In: SDM (2016)

    Google Scholar 

  39. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: KDD (2016)

    Google Scholar 

  40. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  41. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117 (2015)

    Google Scholar 

  42. Yu, X., Sun, Y., Norick, B., Mao, T., Han, J.: User guided entity similarity search using meta-path selection in heterogeneous information networks. In: CIKM, pp. 2025–2029 (2012)

    Google Scholar 

  43. Zhou, Y., Liu, L.: Activity-edge centric multi-label classification for mining heterogeneous information networks. In: KDD, pp. 1276–1285 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, Y., Wang, C. (2017). HINE: Heterogeneous Information Network Embedding. In: Candan, S., Chen, L., Pedersen, T., Chang, L., Hua, W. (eds) Database Systems for Advanced Applications. DASFAA 2017. Lecture Notes in Computer Science(), vol 10177. Springer, Cham. https://doi.org/10.1007/978-3-319-55753-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55753-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55752-6

  • Online ISBN: 978-3-319-55753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics