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Evidence-Based Methods for Privacy and Identity
Management

Kovila P.L. Coopamootoo'* and Thomas Grok?

! University of Derby, UK
2 Newcastle University, UK

Abstract. In the advent of authoritative experiments and evidence-
based methods in security research [29,21,4,2], we are convinced that
privacy and identity research will benefit from the scientific method, as
well. This workshop offers an introduction to selected tools of experiment
design and systematic analysis. It includes key ingredients of evidence-
based methods: hallmarks of sound experimentation, templates for the
design of true experiments, and inferential statistics with sound power
analysis. To gauge the state of play, we include a systematic literature
review of the pre-proceedings of the 2016 IFIP Summerschool on Pri-
vacy and Identity Management as well as the participants’ feedback on
their perception on evidence-based methods. Finally, we make our case
for the endorsement of evidence-based methods in privacy and identity
management.

1 Introduction

The Encyclopaedia Britannica defined science as a “system of knowledge that is
concerned with the physical world and its phenomena and that entails unbiased
observations and systematic experimentation.” In general, it is a purpose of
science to advance human knowledge. The scientific method is evidence-based,
includes principles such as falsification or reproducibility as well as statistical
tools to decide between hypotheses.

To what extent is security/privacy research a science? How does research
in this field advance human knowledge? In the recent years, funding bodies
have sought to strengthen evidence-based research in security and privacy and,
arguably, those methods have seen adoption in the field, especially under the
flag of “science of security” [29,21,4,2].

Challenges. Whereas the tenets of the scientific method are often demanded,
they are easily subverted by methodological mistakes or insufficient power under
the all too polished surface. Ioannidis [19] gave a harsh account of the situation,
arguing “why most published research findings are false.”

To make matters worse, there is a replication crisis in science. For example,
270 researchers of the Open Science Collaboration [27] have reported on a dire

* Major contributions were made while the author was at Newcastle University.



situation after having sought to reproduce 100 well-known results published in
three major psychology journals [28]. They could only reproduce 39% of the
results. It is deemed likely that the replication crisis also pertains to other fields,
including security or privacy and identity management.

Even down to the nitty-gritty of statistical inference, many misconceptions
and controversies have been observed, including, for instance, a comprehensive
account of null hypothesis testing by Nickerson [26].

All that glitters is not gold. While evidence-based methods hold a promise to
support the pursuit of knowledge in security and privacy, they ask of us great
diligence to live up to their tenets. This IFIP workshop sought to sensitize par-
ticipants to the hallmarks and inference methods of evidence-based research in
privacy and identity management. It includes examples for true experiments as
well as systematic literature reviews as two classes of evidence that are consid-
ered as most reliable.

Scope. Research methodology for evidence-based methods is a vast topic, filling
tomes in the sciences. Consequently, this workshop summary will only offer a
primer—an introduction to hallmarks, experiment design and statistical infer-
ence. Given that the workshop aimed at sensitizing for evidence-based methods
and its requirements, we make a number of simplifications. We only focus on
(a) true experiments (inducing an experiment condition), (b) hypothesis test-
ing (rejecting a null hypothesis), (¢) two conditions (control and experiment),
(d) simple statistics (difference between means, t-test). Explicitly out of scope
are: qualitative methods, observational studies and complex statistical models.

Outline. This workshop summary contains two theory sections on hallmarks
of empirical research and statistical inference, where each of the theory section
concludes with a concise checklist of quality criteria. Section 2 contains the hall-
marks discussion, leading up to hypothesis testing. Then, we interleave a section
on practical experiment design in Sect. 3 which reflects a round-table discus-
sion of the workshop. From this intermezzo, we continue our theoretical inquiry
with Sect. 4 on statistical inference and power. Section 5 reports on participants
responses to the workshop questionnaire. We detail areas of privacy research
with interest in experimental methodology, methodological issues encountered
and their personal learning objective from the workshop.

2 Hallmarks of Empirical Research

Definition 1 (True Experiment [10]). An investigation in which the inves-
tigators have sufficient control of the system under study, in particular to be able
to determine the assignment of different units of study to different conditions.

A true experiment follows requirements contributing towards rigorous sci-
ence. The requirements include (a) definition of a falsifiable hypothesis, (b) defin-
ing and controlling variables, (c) assessing internal and external validity, (d) re-
peatability and reproducibility of the method and analysis [21,4].



2.1 Falsifiable Hypotheses

Definition 2 (Hypothesis [12]). Specific testable predictions made generally
about the response and explanatory variables in a study.

Testing hypotheses is one of the tenets behind scientific discovery.

Popper [30] coined the theory of falsification, whereby the researcher formu-
lates a hypothesis such that the experiment can show it to be false. According
to Popper, hypotheses cannot be inductively verified, but only empirically falsi-
fied. Falsifiable hypotheses are formulated such that they can be measured and
observed.

r )

Ezample 1 (Falsifiable Hypotheses).

— All swans are white. [30] (Falsifying observation: a black swan)

— Higher cognitive workload implies more click-throughs on phishing links.
(Falsifying observation: experiment showing equal phishing click-troughs
across workloads)

2.2 Controlled Variables

In experiments, we distinguish between three types of variables: manipulated,
controlled or measured. A variable that is manipulated, the independent variable,
is to predict or explain the dependent or response variable.

Definition 3 (Variable). A variable is some characteristic that differs from

subject to subject or from time to time [12].

(a) The independent variable IV is a variable that is induced/manipulated [23].

(b) The dependent variable DV is a variable that is observed/measured [23]. A
systematic change in the IV causes a change in the DV.

(¢) A confounding variable (short: confounder) is an extraneous variable whose
presence affects the variables being studied, so that the results do not reflect
the actual relationship between the IV and DV.

Methods to actively control confounding variables include random assignment of
subjects to conditions, restricting variation in confounders (e.g., selecting sub-
jects of the same age eliminates confounding by age) and matching potential
confounders across conditions. Statistical models can also be used to adjust for
the bias introduced by a confounder during analysis.

2.3 Validity.

Validity refers to the extent to which a measuring instrument is measuring what
was intended [12], where a change in the IV entails a change in the DV.

Definition 4 (Validity [9]). The best available approzimation to the truth and
falsity of propositions.



What we seek to validate are the statements, inferences and conclusions that
we draw from results of empirical research [3]. We differentiate between internal
and external validity.

Internal Validity. In most experiments, researchers are aiming to find out if IV
A has an effect on DV B. If the experiment does not offer any alternative causes
nor explanations on the outcome on B, then the experiment is internally valid.

Definition 5 (Internal Validity [3]). The truth that can be assigned to the
conclusion that a cause-effect relationship between an IV and a DV has been
established within the context of the particular research setting.

External Validity refers to the extent to which the study findings are generaliz-
able from a laboratory setting to other settings.

Definition 6 (External Validity [3]). The question of whether an effect (and
its underlying processes) that has been demonstrated in one research setting would
be obtained in other settings, with different research participants and different
research procedures.

Not all experiments can be both internally and externally valid. Depending on
the purpose of the experiment, researchers need to make a trade-off.

2.4 Repeatability and Reproducibility

Replication is the attempt to recreate the conditions sufficient to obtaining a
previous observed finding [28]. Scientific claims gain credence when their sup-
porting evidence can be replicated [28].

Replication has been highlighted as a problem in scientific research. For ex-
ample, the Open Science Collaboration [28] conducted a large-scale replication
study (IV = 100) of psychological journals and found that replication effects were
on average half the magnitude of original effects.

We distinguish between repeatability and reproducibility as two conceptual
frames for replication.

Definition 7 (Repeatability [12]). The closeness of the results obtained in
the same test material by the same observer or technician using the same equip-
ment, apparatus and/or reagents over reasonably short intervals of time.

Definition 8 (Reproducibility [12]). The closeness of results obtained on the
same test material under changes of reagents, conditions, technicians, apparatus,
laboratories and so on.

Remark 1 (Repeatability vs. Reproducibility).
While repeatability refers to replicating the experiment by keeping everything
same (including the experimenter), reproducibility refers to altering specific com-
ponents while keeping the design consistent, especially when the experiment is
reproduced by an independent experimenter.



2.5 Hypothesis Testing

In this workshop summary, we limit the scope of our inquiry to hypothesis test-
ing [15,25,20], a particular method of statistical inference that seeks to dis-
tinguish between hypotheses. We focus on making a decision between a null
hypothesis and an alternative hypothesis.

Definition 9 (Hypothesis Testing).

(a) A statistical hypothesis test is a method of statistical inference in which a
hypothesis of a proposed statistical relationship is compared to an idealized
null hypothesis that claims there is no relationship.

(b) The null hypothesis Hg is the statistical hypothesis that there is no effect, no
difference between conditions.

(c) The alternative hypothesis Hy is the statistical hypothesis that there is an
effect, a difference between conditions.

Hypotheses are expressed on the population statistics, not the sample statistics.

Ezample 2 (Difference of Means). When considering the means across two
conditions, the two hypotheses are:

— Null hypothesis Ho: p1 = po,

— Alternative hypothesis Hi: p1 # po.

A sound procedure for hypothesis testing will proceed as illustrated in Fig. 1.

1. State null hypothesis Hg and alternative hypothesis H; explicitly, first.

2. Evaluate the statistical assumptions made, select a relevant test statistic,
and select a significance level «, a probability threshold below which the
null hypothesis will be rejected (cf. Sect. 4.1).

3. Evaluate the statistical inference by calculating the test statistic. Reject the
null hypothesis if and only if the p-value is less than the specified significance
level a.

We will discuss statistical inference and p-values in Sect. 4.1.

Research Statistical
Question Hypotheses Stats Setup Inference
Testable? Assumptions? Evaluate Test
?
Relevant: Falsifiable? ||| Test Statistic? Statistic
Null Significance Critical Region
Hypothesis Level? p-Value
Alternative Power? Reject
Hypothesis Sample Size? Ho/H,

Fig. 1: Simplified process of hypothesis testing.



Remark 2 (Controversy and Criticism). There has been much controversy about
hypothesis testing. Among its most vocal critics is Jacob Cohen [7]. First, we need
to note that a statistically significant result only means that the effect is deemed
not nil, nothing more. Slavishly following the “sanctification by significance” has
been considered as one of great ailments in scientific reasoning. Nickerson [26]
offers a comprehensive overview of the controversies around Null Hypothesis
Significance Testing (NHST), of which we highlight misconceptions on p-values
in Remark 3 (Sect. 4.1).

Multiple proponents have argued to deprioritize hypothesis testing in favor
of robust estimation with confidence intervals, e.g., as expressed by Gardner and
Altman [17]. The American Psychology Association (APA) [1] has consequently
made the reporting of confidence intervals a minimum standard.

While this workshop summary adheres to hypothesis testing, we advocate a
cautious and diligent interpretation: Consider the size of effects investigated,
the required power and sample size to detect those effects (cf. Sect. 4.2).

2.6 Checklist: Hallmarks

[0 Make hypotheses falsifiable, i.e., construct them such that experiments or
observations can show them to be false.

Specify independent variables (IVs) and their manipulation. Operationalise
dependent variables (DVs) and specify validated measurements.

Explicitly declare null hypothesis and alternative hypothesis a priori.

If feasible, prepare a randomized controlled testing the hypotheses.

Control for confounders, e.g., by restricting variation or matching subjects.
Establish to what extent a change in IV entails a change in DV. Report
biases and assumptions that impact this entailment.

Make it clear whether the study is repeating or reproducing existing research.
Document recruitment, sampling, procedure, experiment design, manipula-
tions, measurements, analyses clearly for forward reproducibility.

oooo o

O

3 An Exercise in Experiment Design

We have prepared the ground by introducing hypothesis testing. Before we pro-
ceed with statistical inference in Sect. 4, we discuss an exercise in experiment
design based on a hypothetical scenario.

Ezample 3 (Scenario “When the cat’s away, the mice do play”).
A security company observes that in the evenings—when the boss—is away
more dangerous sites are accessed than during day times.

3.1 Developing Research Questions.

The participants are asked to answer the following questions:



1. What is an interesting research question (RQ) for the scenario of clicks to
dangerous sites?

2. Independent Variable (IV): What factor influences the number of clicks on
dangerous sites?

3. Dependent Variable (DV): How can we measure the outcome reliably?

4. What is a testable null hypothesis (Hg)?

5. What is the alternative hypothesis (H;)?

We advocate for the simple example research questions to create a core ex-
periment design to nail down how the IV is manipulated, how he success of
this manipulation is checked, and how the DV is reliably measured. We offer a
template in Fig. 2. Cf. Field and Hole [14] or Montgomery [24] for experiment
designs.

Manipulation
(v)

Control Manipulation| |Measurement
Condition D Check D (DV)

Experiment
Condition

Fig.2: A core template for a two-condition experiment with manipulation check.

The following examples were designed by workshop participants in round-
table discussions in response to the questions above.

Ezample 4 (Design Group 1).

RQ. How does the presence of the boss impact clicking dangerous links? IV.
Presence of the boss. DV. #mistakes clicking dangerous links. Hg. The mean
number of mistakes is equal between the conditions “boss present” and “boss
absent.” Hy. The mean number of mistakes is greater when the boss is absent.

Ezample 5 (Design Group 2).

RQ. How does cognitive workload impact clicking phishing links? IV. Cogni-
tive workload. DV. #mistakes clicking phishing links. Ho. The mean number
of phishing mistakes is equal between the depleted experiment condition and
the non-depleted control condition. Hy. The mean number of phishing mistakes
is greater in the depleted condition than in the control condition.




Ezample 6 (Design Group 3).

RQ. How does down-time impact clicking of dangerous sites? IV. Down-time
without customer. DV. #mistakes accessing dangerous sites. Hg. The mean
number of accesses to dangerous sites is independent from the measured down-
time. Hi. An increased down-time implies an increased mean number of ac-
cesses to dangerous sites.

\ J

We see from this example that for a given scenario a variety of relevant
research questions and operationalizations in statistical hypotheses is possible.
Consequently, it is crucial to write down precisely what is being investigated
before the experiment is designed. The key points here are to commit to the
independent and dependent variables, to settle the manipulation and measure-
ment methods used, and to express the null and alternative hypotheses in the
exact terms of these variables.

3.2 Structured Abstract.

We recommend a structured abstract as a concise tool of stating the intention of
an experiment (in less than one page). The structured abstract covers
1. Background. The motivation and theoretical context of the experiment.
2. Aim. The goal of the experiment expressed in one concise sentence.
3. Method. The concise method of the experiment, including sample size,
group design, what is manipulated (IV) and what is measured (DV).
4. Expected Results. The factual outcomes expected from the experiment.
5. Expected Impact. So what? What does the experiment mean?
A structured abstract is a superb tool in reporting findings soundly and endorsed
by specialist venues, such as Learning from Authoritative Security Experiment
Results (LASER)3. Example 7 reports the outcome of the scenario study.

4 Statistical Inference and Power

Table 1: Statistical inference decision matrix.

Reality Ho is TRUE. Ho is FALSE.
Decision H: is FALSE. H; is TRUE.
. Confidence Level TYPE II ERROR
We reject Hi. 1—a 3
. TYPE I ERROR POWER
We reject Ho. o 1-8

3 http://www.laser-workshop.org
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Ezample 7 (Structured Abstract).

Background. Psychology research predicts an impact of tiredness on decision
making.

Aim. We investigate the impact of tiredness on mistakes on phishing click-
throughs.

Method. Two groups of 20 participants each were asked to evaluate 50 mixed
e-mails (25 phishing), one group was tired, the other was not. We compared
the number of mistakes across groups.

Results. The mean number of mistakes of the tired group (Mg = 13.9, SDg =
5.77) was significantly greater than that of the control group (Mc =
10.75, SDc = 3.75), two-tailed #(38) = —2.047,p = .049, 95% CI[0.18,6.28].
We observed a medium effect size (d = 0.68).” The experiment achieved a
power of 55%.

Impact. Tired users succumb to phishing.

¢ Reporting confidence intervals (CI) and the effect size as mandated by the
APA guidelines [1].

4.1 Statistical Inference

As we have seen in Sect. 2.5, we seek to decide between the null hypothesis Hg
and the alternative hypothesis H;. We do not know what the situation in reality
is: whether Hyg is true or false. All we can do is making an observation (in an
experiment) and base a decision to reject or accept Hg on the likelihood of that
observation. Because Hy and H; are meant to be complements, we end up with
four decision outcomes summarized in Tab. 1.

Let us consider the left-hand column of Tab. 1 first: In reality, the null hypoth-
esis Hy is true. We specify in advance a significance criterion «, which quantifies
the likelihood of mistakenly rejecting the null hypothesis Hg. As Cohen for-
mulates it [8], “a represents a policy: the maximum risk of attending such a
rejection.” If we reject Hp even though Hg is true, we commit a Type I Error.

If we correctly reject the alternative hypothesis H; and hence accept the null
hypothesis Hg, we do so at a confidence level 1 — a.

Test Statistics and p-Value. We conduct statistical tests to evaluate how
likely the observation is, assuming the null hypothesis to be true.

Definition 10 (p-Value [22]). A p-Value is the probability of data as extreme
or more extreme as that obtained, computed under the presumption of the truth
of the null hypothesis Hqo. In symbols, if we let D stand for data as or more
extreme as that obtained, then a p-value is the conditional probability

p = Pr(D|Ho).

Hypothesis testing with significant p-values attempts a statistical proof by contra-
diction indirectly. If the p-value is smaller than the specified level of significance



a, we call a test statistic statistically significant and are entitled to reject the
null hypothesis Hp.

Remark 3 (p-Value Misconceptions).

Unfortunately, p-values are often misinterpreted, even in text books. Maxwell
and Delaney [22, p.48] as well as Nickerson [26] offer some pointers for typical
misinterpretations.

(a) We emphasize that in almost all cases, it holds that

p = Pr(D[Ho) # Pr(Ho|D).

Considering these two conditional probabilities equivalent is a fallacy, called
“the confusion of the inverse.”

(b) It is also a grave mistake to believe that p is the probability of the null
hypothesis being true.

(c¢) The likelihood of the alternative hypothesis Hy is only indirectly related
to the p-value [31,19].* Cohen [7] is vocal that the p-value “cannot tell us
anything about the probability that the [alternative| hypothesis is true.”

(d) Note especially that p = Pr(D|Hp) is not a complement of Pr(D|H;) [26].

4.2 Effect Size and Power

Cohen [8] exhorts that an effect that is statistically significant is not necessar-
ily scientifically significant or important. The importance of an effect is largely
linked to the magnitude of the effect. For the example of the difference between
two means, we are interested how large the difference between the two popula-
tions is, and whether it constitutes a non-trivial difference.

Effect Size. We seek to quantify of the magnitude of an effect.

Definition 11 (Effect Size [8]). The effect size (ES) is the degree to which
Ho is false. It is indexed by the discrepancy between Hy and Hg. Each statistical
test has its own ES index. All the indexes are scale free and continuous, ranging
upward from zero, and for all, the Hy is that ES = 0.

The importance of a significant effect with effect sizes is considered that crucial
in the science, that the American Psychology Association (APA) [1] states that
“estimates of appropriate effect sizes [...] are the minimum expectations.”
There are two main families of effect sizes [11]: (a) the d family, assessing
the differences between groups, and (b) the r family, measuring the strength of
a relationship. Effect sizes can be further specified by, for instance, regression

4 Conditional probabilities follow Bayes’ Theorem,

. Pr(D|Hy) Pr(Hy)
PriD) = B DIy Pr(Fy) + Pr(DIHo) PriFo)

Nickerson [26] discusses the links and caveats in depth.



coeflicients or odds ratios. In this workshop summary, we focus on the d-family
of effect sizes, especially on the difference between two means, measured with
Cohen’s d. We refer to Cohen [8,6], Ellis [11] and Fritz et al. [16] for overviews
of different effect size types and their calculations.

Power. Now we are prepared to consider the right-hand side of Tab. 1: How do
we fare in a situation in which the null hypothesis Hp is actually false?

If we accept the null hypothesis Hy mistakenly even though the alternative
hypothesis Hj is true, then we have committed a Type II Error. The likelihood
of committing such an error is called .

Consequently, if we are in the case that the alternative hypothesis H; is
actually true, and we make a correct decision to reject the null hypothesis Hg
we do so at the likelihood of the power of our test.

Definition 12 (Power [8]). The statistical power of a significance test is the
long-term probability, given the population ES, a, and N of rejecting Hy. Power
is 1 — 3, the probability of rejecting a false Hy.

The four quantities sample size N, effect size (ES), significance level o and power
1 — 8 are mathematically connected; given three of them, the fourth quantity
can be computed. We recommend G*Power [13] for this computation.

In authoritative experimentation, we seek to create experiments with suffi-
cient power (as a commonly used rule-of-thumb, 1 — 5 > .8) to have a sufficient
likelihood of correctly rejecting the null hypothesis Hg. Cohen [5] and others have
observed time and again an abysmal lack of power in scientific experiments.

Null Hypothesis critical value Alternative Hypothesis

0 T T T T T T T ' T ' T ' T ' T T T T T

-2 -1 0 1 2 3 4 5 6
Fig. 3: Hypothesis testing with null hypothesis Hg test distribution on the left
and alternative hypothesis H; test distribution on the right. The null hypothesis
is rejected if the a critical value is passed. The graph marks the critical areas for

« and 3, that is, the likelihoods to make Type I and Type II errors.

Underpowered Experiments. For research in privacy and identity management,
we anticipate that the power of experiments is often too low, below 1 — 5 = .5,
and the likelihood of correctly rejecting the null hypothesis basically a coin toss.
We believe the experimenters underestimate the sample size, because of a missing



understanding of effect sizes and a priori power analysis. Fig. 4 illustrates the
sample sizes needed for different levels of power.

Q

Desired Power 1-beta > .8

1000 Effect size d
& 800+ —o— =02
° | 0.4
S 600+ =0.
g 4
S 400 —&— =06
(o]
= 1 —v— =08
200

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Power (1-B err prob)

Fig. 4: Power achieved for different effect sizes and sample sizes. It is apparent
that a desired power of more than 1 — 3 = .8 needs large sample sizes N for
smaller effect sizes d. (Here for an one-tailed independent samples t-test, a = .05)

Remark 4 (N = 30 debunked). There was a myth of a “rule-of-thumb” to run
experiments with a per-group sample size of N = 30. This was debunked by
Jacob Cohen [7], Some Things You Learn Aren’t So. The sensitivity of two-tailed
independent samples t-test for significance level a = .05 and power 1 — 3 = .95
implies required effect size: d = 0.94 (large). Smaller effect sizes d will not be
detected at this power. At a medium effect size (d = .5), such an experiment
will only achieve a power (1 — §) = .48, a coin toss.

High-Powered Experiments. As Cohen argues [7], the null hypothesis—that there
is no effect whatsoever—is never actually true in reality. With a large enough
sample—and thereby large enough power—even infinitesimal effects can still be
detected with statistical significance (cf. Fig. 5). Consequently, it is crucial to put
the hypothesis testing and the rejection of the null hypothesis with statistical
significance into context of the sample size and achieved power.

4.3 Checklist: Statistical Inference

Table 2 contains further reading.

[0 Specify the exact contents of the statistical inference precisely, e.g., in a
structured abstract naming I'Vs, DVs and hypotheses.

[0 Choose relevant test statistics and evaluate their assumptions carefully.

O Conduct an a priori power analysis to determine the required sample size
for a committed significance level o and an appropriate power 1 — 8 > 80%.

[0 Exercise diligence in interpreting p-values and significance, putting them into
context with effect sizes and the post-hoc power the experiment achieved.



Effect size d

—— =05
8
a =07
5 —8— =09
alpha = .05

30 50 70 90 110 130 150 170 190
Total sample size

Fig.5: a-probability for different sample sizes N and effect sizes d (one-tailed
independent-samples t-test at 1—§ = .95), illustrating that—with a large enough
sample size—even smallest effects can be detected with statistical significance.

Table 2: Further reading on statistical inference and power.

Reference Title Comment

Montgomery 2012 [24] Design and Analysis Detailed treatment of design and anal-

of Experiments ysis of experiments.

Howell 2012 [18] Statistical Methods Statistics for experiments with human
for Psychology factors.

Cohen 1992 [8] A Power Primer The quintessential concise introduction

to effect size and power.

Fritz et al. 2012 [16] Effect size estimates Survey of the use of effect size types
incl. best practices for their computa-
tion and transformation.




O Report the results following the APA Guidelines [1], especially by reporting
appropriate effect sizes and confidence intervals. Include all data needed to
recompute the results and their effect sizes (test statistics, standard devia-
tions, coefficients, etc.).

5 Participant Feedback

We asked participants to fill in a questionnaire just before starting the workshop.
We summarize the outcomes of the 12 respondents in Fig. 6.

6 3 11 1 6 2 S 5
“human technological societal & legal philosophical “validity ®data - samplesize rigor & timeliness  n/a
(a) Area of privacy research (b) Methodological issues
“weaknesses ¥ limited progressing  “ depends on subject n/a “design  general skills ~ frameworks ®tricks  less mistakes ~ n/a
(c) State of the field (d) Requirements

Fig. 6: Feedback of 12 participants

5.1 Area of Privacy Research

Second we asked participants “What area(s) of privacy do you research/interests
you?” Of the 12 participants, six reported the human dimension of privacy, three
reported technological aspects (geolocation and transparency), one reported the
societal dimension and personal data (P3: “personal data, social exclusion, effect
on the use of personal data”), one reported legal dimension in the context of
health-care (P12: "Privacy for health-care systems, compliance with legal frame-
works of privacy and data protection"), one philosophical dimension.

The human dimension responses covered aspects of P1: “attitude, behaviour,
decision-making;” P2: “HCI, usability;” P8: “views of privacy among ‘normal’
people;” P9: “perceptions of privacy, how to make people more aware;” P10:
“genomic privacy;’ P11: “corruption and human behaviour."

5.2 Methodological Issues

Third, we asked participants “What methodological issues have you encoun-
tered?” From the 12 response sheets, five were excluded as they did not answer
the question. Validity was the most recurring response (six), with three partici-
pants pointing towards internal validity: P11 “measuring what is intended;” P4



“software can have errors and it is unclear if experimental results can be caused by
error programs.” One participant stated on validity and confounders, P9 “not un-
derstanding behavioural issues |...] may ruin months of data gathering.” Three
responses were about external validity. P4 and P9: “generalisability;” P4 and
P5: “representativeness.” Two responses were about data: P1: “difficulty investi-
gating categorical data” or large-scale data gathering (P3) The other responses
included P1: “sample size;” P8 mentions running timely rigorous experiments:
“experiments that can be done rigorously yet in a timely manner.”

5.3 Opinion on Experimental Research in Privacy

Fourth, we asked “What is the state of experimental research in privacy?” From
the 12 participants, five were new to privacy or reported they did not know.
Two participants pointed to weaknesses, with P9 suggesting the state to be
“dubious” and P11: “fairly poor.” Two participants suggested an early state, P10,
suggested experimental research in privacy is in “early development;” P5 stated it
is “limited.” Two participants suggested the state is progressing, with P1: “there
are many longitudinal studies on privacy behaviour” and P6: “in progress.” One
participant, P4, suggested that it depends on the subject.

5.4 Requirements on Workshop

Fifth, we asked “What would you like to learn in this workshop today?” Of the 12
participants, six either did not provide a response or understand the question;
six other thought the workshop would improve their skills in one way or another.
Two participants were concerned with experiment design; P8 thought of “Good
ways of running experiments;” P9 expected “better ideas to design experiments.”
P11 sought to learn about: “frameworks.” P2 mentioned “tips and trades (sic)
in ways forward;” and Pl expected help on “how to perform research with less
mistakes.”

6 Conclusion

From the participants’ feedback in Sect. 5 we see that, on the one hand, partici-
pants are interested in research that lend themselves to evidence-based methods,
such as human dimensions of privacy and identity. On the other hand, they re-
port a dire situation of the state of play in the field and a need to learn more on
research methodology.

“[Perhaps|, we should simply study our Mr. Pritchard and learn our
rhyme and meter and go quietly about the business of achieving other
ambitions.” — John Keating, Dead Poets Society

Should we simply run studies that receive “pass” marks in our community—
ignoring the depths of evidence-based methods—and go quietly about the busi-
ness of achieving other ambitions? Mastering evidence-based methods is a chal-
lenging prospect, daunting at times. However, what is at stake here is our ca-
pacity as a community to truly learn from our research and advance our field’s



body of knowledge. Consequently, we certainly advocate going deep in research
methodology.

How? From the workshop experience, we believe there are three key ingre-
dients that are reinforcing each other. (a) First, we would focus on the tenets
of reaching clarity on research questions, hypotheses and variables, ideally spec-
ified in concise structured abstracts. (b) Second, we advocate the specification
of sound experiment designs that not only replicate validated methods but also
specify their components in such detail that they propagate forward reproducibil-
ity by other investigators. (c¢) Finally, we stress the importance of the quanti-
tative tools from correct statistical inference, over effect sizes and power, to
interval estimation, all strengthening the reliability of the reported results. We
are convinced that these three ingredients are essential to advance the body of
knowledge of our field.
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