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Abstract. The article discusses a numerical approach to solve optimal
control problems in discrete time that involve continuous and discrete
controls. Special attention is drawn to the modeling and treatment of
dwell time constraints. For the solution of the optimal control prob-
lem in discrete time, a dynamic programming approach is employed. A
numerical example is included that illustrates the impact of dwell time
constraints in mixed integer optimal control.
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1 Introduction

Mixed-integer optimal control is a field of increasing importance as practi-
cal applications often include discrete decisions in addition to continuous-
valued control variables. Examples of such problems can be found, e.g., in
[1,2,4,5,8,14,15,18]. One way to approach mixed-integer optimal control prob-
lems is by solving necessary optimality conditions provided by the well-known
maximum principle. These necessary conditions are valid even for discrete con-
trol sets. In [6] a graph-based solution method exploiting the maximum principle
was developed, which is however limited to single-state problems. The drawback
of maximum principle based methods is that a very good initial guess of the
switching structure is needed which is often not available for practical applica-
tions. Direct discretization methods based on variable time transformations as in
[1,2,9-11,18,19], or direct discretization methods based on relaxations and sum-
up-rounding strategies as in [13,16,17] have shown their ability to solve difficult
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real-world examples. Extensions towards mixed control-state constraints, which
depend on the discrete variable and lead to vanishing constraints, can be found in
[7, Chap. 5] and [12]. The dynamic programming approach in [3, Chap. 7] allows
to consider switching costs to avoid frequent switches of the discrete-valued con-
trols. This paper particularly addresses so-called dwell time constraints in mixed-
integer optimal control problems in discrete time. Dwell times are an important
aspect in many engineering applications, especially in the context of switched
systems. After a switch has occured, the physical process typically requires a
certain time period to recover and to return to normal operation. During this
dwell time the process is limited in its operation and follows specified dynam-
ics. An example for such a behavior is a truck with gear shifts. As the clutch
is engaged, the motor torque does not arrive at the wheels for a short time
period. Only after the clutch is released again, the motor torque is distributed
at the wheels. Throughout the paper, we focus on optimal control problems in
discrete time, which exist in their own rights but often they are obtained as
discretizations of optimal control problems in continuous time. The purpose of
the paper is twofold. Firstly, a model taking into account dwell time is sug-
gested. Herein, we will use delays in the dynamics. Secondly, it is shown that a
dynamic programming principle applies and can be used for numerical computa-
tions, if the state dimension is low. The paper is organized as follows. Section 2
defines the mixed-integer optimal control problem in discrete time with dwell
time constraints. Section 3 discusses a dynamic programming approach to solve
the problems. Section 4 discusses an illustrative numerical example.

2 Modeling Dwell Time Constraints in Mixed-Integer
Optimal Control in Discrete Time

Let a fixed grid Gy = {to < t1 < ... < ty} with N € N be given. For i =
0,...,N and z € R let ) # X(¢;) C R" and 0 # U(t;,x) € R™ be closed
connected sets and

V={v... oM}

a discrete set of vectors v/ € R™, j = 1,..., M. On the grid Gy, grid func-
tions are introduced. The grid function z : Gy — R™ is called state and it
is restricted by the state constraints x(t;) € X'(¢;), ¢ =0,..., N. The grid func-
tion v : Gy — R™ is called real-valued control and it is restricted by the
control constraints u(t;) € U, i = 0,..., N. The grid function v : Gy — R™ is
called discrete-valued control and it is restricted by the constraints v(t;) € V,
i=0,...,N. We say the discrete-valued control switches at time point t; € Gy
with ¢ € {0,..., N — 1}, if v(¢;) # v(ti+1). Switches in the grid function v can
be measured with the help of the discrete variation dv : Gy — R™ defined by

N v(ti+1)—v(ti), fOI‘iZO,...,N—l,
dv(ti) = {v(tN) —v(ty_1), for i = N.

A jump of v at t; occurs if and only if dv(¢;) # 0. In order to define dwell time
constraints let L € N denote a number of steps and u € U a fixed control vector.



Dynamic Programming Approach with Dwell Time Constraints 161

Definition 1. A dwell time constraint of time horizon length L € N and control
u applies, if and only if the following conditions are met:

(a) v switches at t; for somei € {0,...,N —1} and
(b) u(tipe) =u fort=1,...,L.
In other words, a dwell time constraint is a logical implication of type

v(t;) Zo(tis1) = wu(tipe)=uforl=1,... L,

i.e. if the discrete control switches, then control w is fixed to @ for a defined
future time horizon of length L.

Remark 1. For notational simplicity we fixed the full control vector u in Defin-
ition1 (b) to a specified value @ for all time points ¢;1¢, £ = 1,..., L. This can
be generalized such that only some components of u are fixed to specified values
which may even vary with the index ¢. This more general setting would cause a
more technical notation, but otherwise can be treated with the same techniques
as below.

Let the state evolve according to the discrete dynamics

x(ti+1) = f(t“.’L'(tl), u(ti),v(ti)), L= O7 1, ey N — 1.

Imposing a dwell time constraint of length L and value @ implies that the future
state depends not just on the current control value but on the history of the
control v, i.e.

u(ti) € Uv(ts), v(ti-1),- .., v(ti-L))
a { U, ifu(t i_g):v(ti_g_l) for {=0,1,...,L—1,
)| {a}, otherwise.

Herein and throughout the paper we use the convention
v(t_g) := v(to) for¢=1,...,L. (1)

We arrived at the following mixed-integer optimal control problem in discrete
time with a dwell time constraint of length L with value u:

Probelm 1 (DMIOCP).

Minimize
N—1
F(z,u,v) = p(z(ty)) + Z Jo(ti, z(ts), u(ts), v(ts))
i=0
subject to the constraints
w(tiyr) = f(ti, x(t), ults), v(t)), i=0,1,....,N -1,

( )*x07

x(t;) € X(t;), 1=0,1,..

u( z) ( ( 74),7)(@‘,1),...7’0(151;1))7 1= 0,1,...,N — 1,
(i) € i=0,1,...,N

vti
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Note that the control v(¢y) does not have any influence in the problem. Con-
sequently, only switches at the time points tg,...,txy_1 are taken into account.
In the sequel we will make use of the convention vy = vy_1 whenever useful.

3 A Dynamic Programming Approach

DMIOCP is embedded into a family of perturbed problems as follows. To this
end we use the notation ’U(Lk) := (Vg—1,...,0—r) for L € N and some index k

with values vy_y € V for £ =1,..., L. We denote with V¥ the cartesian product
VY x ---x V (L times).
Probelm 2 (DMIOCP(tk,xk,v(Lk))),

For a given index ty € Gy, zx € R™, and vfk) € VL', minimize

N—1
Fulw,u,v) = p(e(tn)) + 3 foltsalts), ult:), vlt:))
i=k
subject to
ZL’(tiJrl) = f(ti,x(ti),u(ti)w(tz)), 1= k, ey N — ].7
z(ty) = g,
.’L‘(ti)GX(ti), i=k,...,N, 9
ults) € Uw(t), v(tsr)se e v(tin), =k N —1, (2)
o(t;) €V, i=k,...,N—1,
v(tk,g) = Vk—g¢, {=1,...,L.

Definition 2. The function W : Gy x R™ x VX' — R that assigns to every
(tk,xk,v(]“k)) € Gy x R™ x VI the optimal value of DMIOC’P(tk,xk,U(Lk)) 18
called optimal value function of DMIOCP, i.e.

z,u,v with (2)

inf Fy(x,u,v), if DMIOCP(t1, 1, vk ) is feasible,
W(tk,xk,vﬁc))::{ i ) fh (b vGiy ) 5
00, otherwise.

The next theorem establishes Bellman’s optimality principle.

Theorem 1. Let (%,1,9) be optimal grid functions for DMIOCP and let G%; :=
Gy \{to,---,tk_1}. Then, the restrictions on G%, given by §:|G1;V, ﬁ|G’fw and 17|G;1cv
are optimal for DMIOCP(tk,:i(tk),ﬁ(Lk)) with @(Lk) = (0(tk—1),...,0(tg—r)) for
all k =0,..., N subject to the convention (1).

Proof. Assume that the restrictions :i|G?V , 12|G:]€V , and 17|G;;V are not optimal for
DMIOCP (ty, &(tx), ﬁ(Lk)) for some k € {0,..., N — 1}. Then there exist feasible
grid functions # : Gk — R" @ : Gk — R"™ and ¥ : G, — V for
DMIOCP (tg, &(tx), f)(Lk)) with

F(%,0,7) < Fy(z,4,0), (3)
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Z(tr) = &(tx), and 0(tg—¢) = 0(tx—¢) for € = 1,..., L. Hence, the trajectories
z:Gy — R"™ u:Gy — R™, and v: Gy — V with

) for i =0,1,...,k—1,

(z(ts), ults), v(ts)) = { (8(8:), alta), ot ) fori=kk+1,...,N,

(@(t:), ats), o(t
are feasible for DMIOCP and satisfy

%
%

ST

N-1
F(m,u,v) = gD(:L‘(tN)) + fO(tiﬂx(ti)>u(ti)7v(ti))

=0
k—1 N-1

= (p(:i‘(t]v)) + Z fo(twj(tl)vﬁ(ti)v@(tz)) + fO(t17$(tl)7a<tZ)7@(tl))
i=0 i=k
k—1 N—-1

<@@(tn)) + 2 folts, 2(ti), alts), (k) + ) folts, (L), alts), 0(t:))
&

- Sﬁ(j(tN)) + fO(tiaj(tz)vﬁ(tl)vﬁ(tz))
=0

where (3) is exploited. This contradicts the optimality of Z(-), 4(-), and ¢(-). O
From the definition of the optimal value function one immediately obtains

(zn), if 25 € X(tn), (4)

L \_J)®
W(tNaxNaU(N))_{ oo, otherwise.

Bellman’s optimality principle allows to derive the following result.

Theorem 2. For all (tk,xk,v(Lk)) €GN xX(ty)xVE and k=N —1,...,0, the
optimal value function in Definition 2 satisfies the recursion

W(tk,xk,v(Lk)) = inf {fo(t;ﬁxk,um)

WEU(V,Vk—1,...,Vk—L),VEV

+W (tks1, £t T, u,v), U&H))}

where vﬁc) = (Vk—1,-..,Vk—p) and U(Lk+1) = (U, Vp—1,...,Vk—L+1) and conven-
tion (1) is used. Herein, W at t = tyn is given by (4) and the convention
W(tk,xk,v(Lk)) = 00 is used whenever (xk,v(Lk)) ¢ X(t) x VE.

Proof. Let (tk,mk,v(ljc)) € Gy x X(t) x VL and k € {0,..., N — 1} be given. If
(zk,v(Lk)) ¢ X(tx) x VE, then W(tk,xk,v(Lk)) = oo by definition.

If f(tg,xg,u,v) & X(tgy1) for all v € U(v,vg—1,...,v5—1) and all
v € V, then DMIOCP(tmmk,v(Lk)) and DMIOCP(tkH,f(tk,xk,u,v),v(LkH))
are infeasible for every u € U(v,v5_1,...,v5—r1) and every v € V and hence
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W(tk,xk,v&)) = oo. For arbitrary u € U(v,v4_1,...,vx_r) and v € V with
fr, 2k, u,v) € X(tgy1) the definition of the optimal value function yields

W(tkaxkhv(lig)) S fo(tk7$k,u,7}) + W(tk+1,f(tk,ﬂ?k,U,U),’U(Lk_,’_l)).

Taking the infimum over all u € U(v,vp_1,...,v%_1) and v € V yields the first
part of the assertion. Now let ¢ > 0 and feasible grid functions Z,u,v with
Z(ty) = xx and

F(%,,0) < W(tk, z1, 03y) + €

with f)(Lk) = (0(tk-1),-..,0(tk—1)) be given. Then,

W (th, T, 0(3y) = Fi(E, @, 0) — €
> foltk, vk, u(ty), 0(tx))
AW (trras f (b wr, @tr), B(tr)), 0ig 1) — €

> inf {fo(tk, T, Uy V)
wEU(v,0(tk—1),--,0(tk—1)),vEV

+W(tk+1vf(tk7$k»uvv)au(LkJrl))} -5

where 9f; 1) = (0(tg), ..., 0(te—r+1)) and vfj ) = (v, 0(te—1), -, O(tr—r41))-
As e > 0 was arbitrary, the assertion follows. O

Theorem 2 allows to deduce the following dynamic programming algorithm.
Note that owing to the presence of U(Lk) in DMIOCP, the recursive formula for

the optimal value function is not of standard type. The vector va) contains the
history of the discrete-valued control, which influences the decision at stage k.
The vector v(Lk) can be interpreted as additional states in the argument of W

and leads to an additional runtime factor of M* when compared to standard
dynamic programming. In general this is a prohibitively large factor, but often
M and L are moderate numbers. For instance, a binary control (M = 2) and
L = 3 leads to a factor of 8.

Algorithm: Dynamic Programming
Init: Let Gy = {tg < t1 < ... <tn} be given. Set

(p(fEN), if TN € X(tN)7
o0, otherwise

W(tN,:L'N,’U(LN)) = {
for all zy € R™ and all v(LN) = (vN_1,...,on_1) € VL.
Phase 1 (Backward solution): For k= N —1,...,0 compute

W(tk,xk,v(f‘k)) = inf {fo(tk,xk,u,v)
wEU (v, —1,...,V—L),VEV

W (b, St psw,0),0he)) b (5)
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with v(LkH) = (v,Vk-1,--,Vk—r+1) for all z; € R™ and all U(Lk) %

Phase 2 (Forward solution): Set Z(ty) = x¢. For k =0,...,N — 1 find

((te), o(t)) =arg _ min {fo(tk7:%(tk),u,v)
weU(v,0(tk—1),...,0(tk—1)),vEV
FW (b1, F (b @1, 0, 0), 8fi4)) } (6)
with 6(Lk+1) = (0, 0(tg-1),...,0(tk—r+1)) and set

E(ter1) = ft, 2(tr), a(tr), 0(tr)).

3.1 Practical Issues in the Dynamic Programming Algorithm

The implementation of the dynamic programming approach works on a compact
state space 2 = {x € R™ | zy <z < z,} C R™ with lower and upper bounds
Ty, T, € R™ and —oc0 < xp < x, < 00. The bounds should be chosen such that
all realistically relevant trajectories are contained in this set. The state space {2
is discretized with an equidistant partition

. T =T+ iixu’jN_m“”',
QN:z: ((El,...,l’nz) EQ j:17"'7n’$7
i€{0,...,N;}

with N, € N. During the backward solution and forward solution phases of
the dynamic programming algorithm values of the value function at points x =
f(tk, Tk, u,v) not in 2y, are approximated by polynomial interpolation of the
value function on a cell of 2y, that contains z.

The minimization in (5) and (6) is usually done by a sufficiently dense dis-
cretization of the control set I/ and complete enumeration of all possible values.
The v-component is not crucial as V is supposed to be a finite discrete set. For a
fixed v the minimization w.r.t. the component u could be carried out using meth-
ods from nonsmooth optimization, e.g. Bundle methods or subgradient methods.
However, such methods may result in a local minimum and therefore the pre-
viously mentioned enumeration technique is preferred. The general drawback of
the dynamic programming approach is the curse of dimensions. Since the value
function W depends on the state x and the control history U(Lk) of length L,
the approach is computationally feasible merely for low state dimensions and
moderate values of L and M, where M is the number of elements in V.

Remark 2. Please note that a more efficient coding of the switching history is
possible. To this end, it would be sufficient to replace v(Lk) in W by vg—; and
an additional state with values in {0, ..., L}, which encodes how long the last
switch is ago (with 0 meaning longer than L).
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4 Numerical Results

We consider a car of mass m driving on a road with a given slope profile ~(-)
and aim to optimize the gear shift control on a given time horizon [0,T]. The
car model is adapted from [1] with the state (z,v) (position and velocity) and
controls ¢ € U := [0, 1] (gas pedal position) and p € V := {1,...,5} (gear shift).
The optimal control problem in discrete time with step-size h = T/N, N € N,
reads as follows:
Minimize
N—1
—ax(tn) +h Y folw(te), ¢(t), n(te))
k=0
subject to the constraints x(0) = 1470, v(0) = 23, and fork =0,1,...,N—1,

z(tet1) = z(tk) + ho(te),
(thir) = v(tk)+% (Zg(,u(tk))ltMmot(@b(tk)aU(tk)a.u(tk))

R

—Fr(v(tr)) cos(v(z(tk))) — Fr(v(t)) — mg sin(v(w(tk))))
ptn) €V, o(te) €U, vlty) € [22,30].

Herein, o > 0 is a weight factor, ¢4 is the gear transmission coefficient, i; the
motor torque transmission, R the wheel radius, Fg the friction force of the rolling
wheel, Ff,(v) = 1c,pAv? the drag, and

fo(’l), ¢7 HJ) = ﬁlmet(Uv N’) + ﬂQ ‘MMOt(gba v, ,LL)| + ﬂ3met(Ua ,LL) |Mm0t(¢7 v, :U’)|

models the fuel costs, where w;,,: denotes the rotary frequency of the motor and
M.+ the motor torque, for details on wyot, Mimot, and Fr please refer to [1].

Figure 1 shows the results of the dynamic programming algorithm for both,
the problem with dwell time constraint (with L = 3 and @ = ¢ = 0, i.e. ¢
is set to zero, if p switches) and the problem without dwell time constraint.
The parameters a = 1/10, 51 = 1/120, 82 = 10/258, 83 = 1/10320, ¢,, = 0.3,
p=1249512, A =2, R =0.302, iy = 3.91, g = 9.81, m = 2000, T' = 10, N = 25,
N, = (100,45), N, = 100, i4(1) = 3.91, i4(2) = 2.002, i4(3) = 1.33, i4(4) = 1,
i4(5) = 0.805 were used. The optimal value for the problem with dwell time
constraint is —79.7656, while the optimal value without dwell time constraint is
—88.0430. In the presence of the dwell time constraint it can be nicely seen that
¢ is set to zero after p switches at approximately ¢ = 4. The CPU time on a PC
with 2.3 GHz is 1 min 47.146 s without dwell time constraint and 14 min 38.9s
with dwell time constraint.

5 Conclusions

The paper discusses a dynamic programming principle that allows to consider
dwell times in a time discrete optimal control problem with discrete-valued con-
trols. Dwell times have to be taken into account in many applications where
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Fig. 1. Optimal gear sequence (top left), gas pedal position (top right), velocity
(bottom left), and slope profile (bottom right).

a switch in a discrete-valued control fixes the dynamics of the process for a
specified time period before the process can be controlled again. A particular
example is the optimization of gear shifts in a car, where a shift in gears implies
that the motor torque is reduced for a given time period. A dynamic program-
ming approach is suggested to solve such problems and a numerical example
shows the applicability of the method. However, the curse of dimension associ-
ated to dynamic programming approaches limits the method to low dimensional
systems with few states. Hence, it is desirable to develop further methods for this
problem class and extend it to optimal control problems in continuous time. To
this end, a formulation of the dwell time constraint in a continuous time setting
becomes necessary, which is subject to future research.
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