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Abstract. In this work we are interested in the modelling and control
of opinion dynamics spreading on a time evolving network with scale-free
asymptotic degree distribution. The mathematical model is formulated
as a coupling of an opinion alignment system with a probabilistic de-
scription of the network. The optimal control problem aims at forcing
consensus over the network, to this goal a control strategy based on
the degree of connection of each agent has been designed. A numerical
method based on a model predictive strategy is then developed and dif-
ferent numerical tests are reported. The results show that in this way it
is possible to drive the overall opinion toward a desired state even if we
control only a suitable fraction of the nodes.
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1 Introduction

Graph theory has emerged in recent years as one of the most active fields of
research [1,8,9,23]. In fact, the study of technological and communication net-
works earned a special attention thanks to a huge amount of data coming from
empirical observations and more recently from online platforms like Facebook,
Twitter, Instagram and many others. This fact offered a real laboratory for test-
ing on a large-scale the collective behavior of large populations of agents [16,19]
and new challenges for the scientific research has emerged. In particular, the
necessity to handle millions, and often billions, of vertices implied a substantial
shift to large-scale statistical properties of graphs giving rise to the study of the
so-called scale-free networks [8,17,23].

In this work, we will focus our attention on the modelling and control of opin-
ion dynamics on a time evolving network. We consider a system of agents, each
one belonging to a node of the network, interacting only if they are connected
through the network. Each agent modifies his/her opinion through a compro-
mise function which depends both on opinions and the network [3,4,5,13,14,22].
At the same time new connections are created and removed from the network
following a preferential attachment process. For simplicity here we restrict to
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non-growing network, that is a graph where the total number of nodes and the
total number of edges are conserved in time. An optimal control problem is then
introduced in order to drive the agents toward a desired opinion. The rest of the
paper is organized as follows. In Section 2 we describe the alignment model for
opinions spreading on a non-growing network. In order to control the trajectories
of the model we introduce in Section 3 a general setting for a control technique
weighted by a function on the number of connections. A numerical method based
on model predictive control is then developed. Finally in Section 4 we perform
numerical experiments showing the effectiveness of the present approach. Some
conclusion are then reported in the last Section.

2 Modelling opinion dynamics on networks

In the model each agent i = 1, . . . , N is characterized by two quantities (wi, ci), i =
1, . . . , N , representing the opinion and the number of connections of the agent
ith respectively. This latter term is strictly related to the architecture of the
social graph where each agent shares its opinion and influences the interaction
between individuals. Each agent is seen here as a node of a time evolving graph
GN = GN (t), t ∈ [t0, tf ] whose nodes are connected through a given set of edges.
In the following we will indicates the density of connectivity the constant γ ≥ 0.

2.1 Network evolution without nodes’ growth

In the sequel we will consider a graph with both a fixed number of nodes N and
a fixed number of edges E. In order to describe the network’s evolution we take
into account a preferential attachment probabilistic process. This mechanism,
known also as Yule process or Matthew effect, has been used in the modeling
of several phenomena in biology, economics and sociology, and it is strictly con-
nected to the generation of power law distributions [8,23]. The initial state of the
network, GN (0), is chosen randomly and, at each time step an edge is randomly
selected and removed from the network. At the same time, a node is selected
with probability

Πα(ci) =
ci + α∑N

j=0(cj + α)
=

ci + α

2E +Nα
, i = 1, . . . , N, (1)

among all possible nodes of GN , with α > 0 an attraction coefficient. Based
on the probability (1) another node is chosen at time t and connected with the
formerly selected one. The described process is repeated at each time step. In this
way both the number of nodes and the total number of edges remains constant
in the reference time interval. Let p(c, t) indicates the probability that a node is
endowed of degree c at time t, we have∑

c

p(c, t) = 1,
∑
c

c p(c, t) = γ. (2)



On the optimal control of opinion dynamics on evolving networks 3

Then we have that the described process is in agreement with the following
master equation

d

dt
p(c, t) =

D

E
[(c+ 1)p(c+ 1, t)− cp(c, t)]

+
2D

2E +Nα
[(c− 1 + α)p(c− 1, t)− (c+ α)p(c, t)] ,

(3)

where D > 0 characterizes the relaxation velocity of the network toward an
asymptotic degree distribution p∞(c), the righthand side consists of four terms,
the first and the third terms account the rate of gaining a node of degree c and
respectively the second and fourth terms the rate of losing a node of degree
c. The equation (3) holds in the interval c ≤ E, whereas for each c > E we
set p(c, t) = 0. While most the random graphs models with fixed number of
nodes and vertices produces unrealistic degree distributions as the Watts and
Strogatz generation model, called small-world model [21], the main advantage of
the graph generated through the described process is the possibility to recover
the scale-free properties. Indeed we can easily show that if γ = 2E/N ≥ 1 with
attraction coefficient α� 1 then the stationary degree distribution p∞(c) obeys
a power-law of the following form

p∞(c) =

(
α

γ

)α
α

c
. (4)

When α � 1 we loose the features of the preferential attachment mechanism,
in fact high degree nodes are selected approximately with the same probabil-
ity of the nodes with low degree of connection. Then the selection occurs in a
non preferential way and the asymptotic degree distribution obeys the Poisson
distribution

p∞(c) =
e−γ

c!
γc. (5)

A simple graph is sketched in Figure 1 where we can observe how the ini-
tial degree of the nodes influences the evolution of the connections. In order
to correctly observe the creation of the new links, that preferentially connect
nodes with the highest connection degree, we marked each node with a number
i = 1, . . . , 20 and the nodes’ diameters are proportional with their number of
connections.

2.2 The opinion alignment dynamics

The opinion of the ith agent ranges in the closed set I = [−1, 1], that is wi =
wi(t) ∈ I for each t ∈ [t0, tf ], and its opinion changes over time according to the
following differential system

ẇi =
1

|Si|
∑
j∈Si

Pij(wj − wi), i = 1, . . . , N (6)
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Fig. 1. Left: initial configuration of the sample network G20 with density of connectiv-
ity γ = 5. Right: a simulation of the network G20 after 10 time steps of the preferential
attachment process. The diameter of each node is proportional to its degree of connec-
tion.

where Si indicates the set of vertex connected with the ith agent and reflects
the architecture of the chosen network, whereas ci = |Si| < N stands for the
cardinality of the set Si, also known as degree of vertex i. Note that the number
of connections ci evolves in time accordingly to the process described in Section
2.1. Furthermore we introduced the interaction function Pij ∈ [0, 1], depending
on the opinions of the agents and the graph GN which can be written as follows

Pij = P (wi, wj ;GN ). (7)

A possible choice for the interaction function is the following

P (wi, wj ;GN ) = H(wi, wj)K(GN ), (8)

where H(·, ·) represents the positive compromise propensity, and K a general
function taking into account statistical properties of the graph G. In what follows
we will considerK = K(ci, cj), a function depending on the vertices’ connections.

3 Optimal control problem of the alignment model

In this section we introduce a control strategy which characterizes the action of
an external agent with the aim of driving opinions toward a given target wd.
To this goal, we consider the evolution of the network GN (t) and the opinion
dynamics in the interval [t0, tf ]. Therefore we introduce the following optimal
control problem

min
u∈U

J(w, u) :=
1

2

∫ tf

t0

{ 1

N

N∑
j=1

(wj(s)− wd)2 + νu(s)2
}
ds, (9)
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subject to

ẇi =
1

|Si|
∑
j∈Si

Pij(wj − wi) + uχ(ci ≥ c∗), wi(0) = w0
i , (10)

where we indicated with U the set of admissible controls, with ν > 0 a regu-
larization parameter which expresses the strength of the control in the overall
dynamics and wd ∈ [−1, 1] the target opinion. Note that the action of the control
u is weighted by an indicator function χ(·), which is active only for the nodes
with degree ci ≥ c∗. In general this selective control approach models an a-priori
strategy of a policy maker, possibly acting under limited resources or unable to
influence the whole ensemble of agents.

The solution of this kind of control problems is in general a difficult task,
given that their direct solution is prohibitively expensive for a large number
of agents. Different strategies have been developed for alignment modeling in
order to obtain feedback controls or more general numerical control techniques
[2,3,4,5,11,12]. To tackle numerically the described problem a standard strat-
egy makes use of a model predictive control (MPC) approach, also referred as
receding horizon strategy.

In general MPC strategies solves a finite horizon open-loop optimal control
problem predicting the dynamic behavior over a predict horizon tp ≤ tf , with
initial state sampled at time t (initially t = t0), and computing the control on a
control horizon tc ≤ tp. The optimization is computed introducing a new integral
functional Jp(·, ·), which is an approximation of (9) on the time interval [t, t+tp],
namely

Jp(w, ū) :=
1

2

∫ t+tp

t

{ 1

N

N∑
j=1

(wj(s)− wd)2 + νpū(s)2
}
ds (11)

where the control, ū : [t, t+tp]→ U , is supposed to be an admissible control in the
set of admissible control U , subset of R, and νp a possibly different penalization
parameter with respect to the full optimal control problem. Thus the computed
optimal open-loop control ū(·) is applied feedback to the system dynamic until
the next sampling time t+ ts is evaluated, with ts ≤ tc, thereafter the procedure
is repeated taking as initial state of the dynamic at time t + ts and shifting
forward the prediction and control horizons, until the final time tf is reached.
This process generates a sub-optimal solution with respect to the solution of the
full optimal control problem (9)-(10).

Let us consider now the full discretize problem, defining the time sequence
[t0, t1, . . . , tM ], where tn − tn−1 = ts = ∆t > 0 and tM := M∆t = tf , for all
n = 1, . . . ,M , assuming furthermore that tc = tp = p∆t, with p > 0. Hence
the linear MPC method look for a piecewise control on the time frame [t0, tM ],
defined as follows

ū(t) =

M−1∑
n=0

ūnχ[tn,tn+1](t). (12)
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In order to discretize the evolution dynamic we consider a Runge-Kutta scheme,
the full discretized optimal control problem on the time frame [tn, tn+p∆t] reads

min
ū∈U

Jp(w, ū) :=
1

2

∫ tn+p∆t

tn

{ 1

N

N∑
j=1

(wj(s)− wd)2 + νpū
2
}
ds (13)

subject to

W
(n)
i,l = wni +∆t

s∑
k=1

al,k

(
F (t+ θk∆t,W

(n)
i,k ) + Ū

(n)
k Qi(t+ θk∆t)

)
,

wn+1
i = wni +∆t

s∑
l=1

bl

(
F (t+ θl∆t,W

(n)
i,l ) + Ū

(n)
l Qi(t+ θl∆t)

)
,

wni = wi(tn),

(15)

for all n = 1, . . . , p − 1; l = 1, . . . , s; i, . . . , N and having defined the following
functions

F (t, wi) =
1

|Si(t)|
∑

j∈Si(t)

Pij(wj − wi), Qi(t) = χ(ci(t) ≥ c∗).

The coefficients (al,k)l,k, (bl)l and (θl)l, with l, k = 1, . . . , s, define the Runge-

Kutta method and (Ū (n))l, (W
(n)
i,l )l are the internal stages associated to ū(t), wi(t)

on time frame [tn, tn+1].

Remark 1. (Instantaneous control). Let us restrict to the case of a single pre-
diction horizon, p = 1, where we discretize the dynamic with an explicit Euler
scheme ( a1,1 = θ1 = 0 and b1 = 1). Notice that since the control ū is a constant
value and assuming that the network, GN remains fixed over the time interval
[tn, tn +∆t] the discrete optimal control problem (13) reduces to

min
ū∈U

Jp(w, ū
n) := ∆t

{ 1

N

N∑
j=1

(wn+1
j (ūn)− wd)2 + νp(ū

n)2
}

(16)

with

wn+1
i = wni +∆t (F (tn, w

n
i ) + ūnQni ) , wni = wi(tn). (17)

In order to find the minima of (13) is sufficient to find the value ū satisfying
∂ūJp(w, ū) = 0, which can be computed by a straightforward calculation

ūn = − 1

Nν +∆t
∑N
j=1(Qnj )2

 N∑
j=1

Qnj
(
wnj − wd

)
+∆t

N∑
j=1

Qnj F (tn, w
n
i )

 .

(18)

where we scaled the penalization parameter with νp = ∆tν.
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4 Numerical results

In this section we present some numerical results in order to show the main
features of the control introduced in the previous paragraphs. We considered a
population of N = 100 agents, each of them representing a node of an undirected
graph with density of connectivity γ = 30. The network G100 evolves in the
time interval [0, 50] with attraction coefficient α = 0.01 and represents a single
sample of the evolution of the master equation (3) with D = 20. The control
problem is solved by the instantaneous control method described in Remark 1
with ∆t = 5 10−2. In Figure 3 we present the evolution over the reference time
interval of the constrained opinion dynamics. The interaction terms have been
chosen as follows

K(ci, cj) = e−λci
(
1− e−βcj

)
, H(wi, wj) = χ(|wi − wj | ≤ ∆), (19)

where the function H(·, ·) is a bounded confidence function with ∆ = 0.4, while
K(·, ·) defines the interactions between the agents i and j taking into account
that agents with a large number of connections are more difficult to influence and
at the same time they have more influence over other agents. The action of the
control is characterized by a parameter κ = 0.1 and target opinion wd = 0.8. We
present the resulting opinion dynamics for a choice of constants λ = 1/100, β = 1
in Figure 2. We report the evolution of the network and of the opinion in Figure
3, here the diameter of each node is proportional with its degree of connection
whereas the color indicates its opinion. As a measure of consensus over the agents
we introduce the quantity

Vwd
=

1

N − 1

N∑
i=1

(wi(tf )− wd)2, (20)

where wi(tf ) is the opinion of the ith agent at the final time tf . In Figure 4 we
compare different values of Vwd

as a function of c∗. Here we calculated the size of
the controlled agents and the values of Vwd

both, starting from a given uniform
initial opinion and the same graph with initial uniform degree distribution. It
can be observed how the control is capable to drive the overall dynamics toward
the desired state acting only on a portion of the nodes.

Conclusions and perspectives

In this short note we focus our attention on a control problem for the dynamic
of opinion over a time evolving network. We show that the introduction of a
suitable selective control depending on the connection degree of the agent’s node
is capable to drive the overall opinion toward consensus. In a related work we
will consider this problem in a mean-field setting where the number of agents,
and therefore nodes, is very large [6].
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(a) c∗ = 10
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(b) c∗ = 20
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Fig. 2. Evolution of the constrained opinion dynamics with uniform initial distribution
of opinions over the time interval [0, 50] for different values of c∗ = 10, 15, 30 with target
opinion wd = 0.8, control parameter κ = 0.1, ∆t = 10−3 and confidence bound ∆ = 0.4.
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