Skip to main content

Preferences-Based Choice Prediction in Evolutionary Multi-objective Optimization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Abstract

Evolutionary multi-objective algorithms (EMOAs) of the type of NSGA-2 approximate the Pareto-front, after which a decision-maker (DM) is confounded with the primary task of selecting the best solution amongst all the equally good solutions on the Pareto-front. In this paper, we complement the popular NSGA-2 EMOA by posteriori identifying a DM’s best solution among the candidate solutions on the Pareto-front, generated through NSGA-2. To this end, we employ a preference-based learning approach to learn an abstract ideal reference point of the DM on the multi-objective space, which reflects the compromises the DM makes against a set of conflicting objectives. The solution that is closest to this reference-point is then predicted as the DM’s best solution. The pairwise comparisons of the candidate solutions provides the training information for our learning model. The experimental results on ZDT1 dataset shows that the proposed approach is not only intuitive, but also easy to apply, and robust to inconsistencies in the DM’s preference statements.

This is a preview of subscription content, log in via an institution.

References

  1. Agarwal, M., Fallah Tehrani, A., Hullermeier, E.: Preference-based learning of ideal solutions in TOPSIS-like decision models. J. Multi-Criteria Decis. Anal. 22(3–4), 175–183 (2015)

    Article  Google Scholar 

  2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  5. Friedrich, T., Kroeger, T., Neumann, F.: Weighted preferences in evolutionary multi-objective optimization. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 291–300. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25832-9_30

    Chapter  Google Scholar 

  6. Friedrich, T., Kroeger, T., Neumann, F.: Weighted preferences in evolutionary multi-objective optimization. Int. J. Mach. Learn. Cybern. 4(2), 139–148 (2013)

    Article  Google Scholar 

  7. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Branke, J., Greco, S., Slowinski, R., Zielniewicz, P.: Learning value functions in interactive evolutionary multiobjective optimization. Trans. Evol. Comput. 19(1), 88–102 (2015)

    Article  MATH  Google Scholar 

  9. Jaszkiewic, A.: Interactive multiobjective optimization with the pareto memetic algorithm. Found. Comput. Decis. Sci. 32(1), 15–32 (2004)

    MathSciNet  Google Scholar 

  10. Chaudhari, P., Dharaskar, R., Thakare, V.M.: Computing the most significant solution from pareto front obtained in multi-objective evolutionary. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 1(4), 1–6 (2010)

    Google Scholar 

  11. Zio, E., Bazzo, R.: A comparison of methods for selecting preferred solutions in multiobjective decision making. In: Kahraman, C. (ed.) Computational Intelligence Systems in Industrial Engineering. Atlantis Computational Intelligence Systems, vol. 6, pp. 23–43. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika 39(3/4), 324 (1952)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was carried out at Computational Intelligence Group, Department of Computing Science, University of Oldenburg, Germany with the support of German Academic Exchange Service (DAAD) to Manish Aggarwal as a visiting scientist and university academician.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kramer .

Editor information

Editors and Affiliations

A Benchmark Function

A Benchmark Function

Problem ZDT1 minimizes the two objective functions \(f_1(\mathbf {x})\) and \(f_2(\mathbf {x})\) with \(f_1(\mathbf {x}) = x_1\) and \( f_2(\mathbf {x},\mathbf {z}) = g(\mathbf {z}) h(f_1(\mathbf {x}),g(\mathbf {z}))\) with \(g(\mathbf {z}) = 1+ \sum _{i=1}^N z_i /N\) and \( h(f_1(\mathbf {x}),g(\mathbf {z})) = 1- \sqrt{f_1(\mathbf {x}) / g(\mathbf {z}})\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aggarwal, M., Heinermann, J., Oehmcke, S., Kramer, O. (2017). Preferences-Based Choice Prediction in Evolutionary Multi-objective Optimization. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics