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Abstract. We are witnessing accelerating technological advances in autonomous
systems, of which driverless cars and home-assistive robots are prominent exam-
ples. As mobile autonomy becomes embedded in our society, we increasingly
often depend on decisions made by mobile autonomous robots and interact with
them socially. Key questions that need to be asked are how to ensure safety and
trust in such interactions. How do we know when to trust a robot? How much
should we trust? And how much should the robots trust us? This paper will
give an overview of a probabilistic logic for expressing trust between human or
robotic agents such as “agent A has 99% trust in agent B’s ability or willingness
to perform a task” and the role it can play in explaining trust-based decisions
and agent’s dependence on one another. The logic is founded on a probabilistic
notion of belief, supports cognitive reasoning about goals and intentions, and ad-
mits quantitative verification via model checking, which can be used to evaluate
trust in human-robot interactions. The paper concludes by summarising future
challenges for modelling and verification in this important field.

1 Introduction

Autonomous robotics has made tremendous progress over the past decade, with dra-
matic advances in areas such as driverless cars, home assistive robots, robot-assisted
surgery, and unmanned aerial vehicles. However, high-profile incidents such as the fa-
tal Tesla crash [11] make clear the risks from improper use of this technology. Our
decisions whether to rely or not on automation technology are guided by trust. Trust is
a subjective evaluation made by one agent (the truster) about the ability or willingness
of another agent (the trustee) to perform a task [6, 14]. A key aspect of a trust-based
relationship is that the trustor’s decision to trust is made on the expectation of benev-
olence from the trustee [15], and the trustor is, in fact, vulnerable to the actions of the
trustee. Studies of trust in automation [12] have concluded that it is affected by fac-
tors such as reliability and predictability: it increases slowly if the system behaves as
expected, but drops quickly if we experience failure. However, autonomous robots are
independent decision-makers, and may therefore exhibit unpredictable, and even sur-
prising, behaviour. Further, they need to correctly interpret the social context and form
relationships with humans, thus becoming members of society.

Human relationships are built on (social) trust, which is a key influence in decisions
whether an autonomous agent, be it a human or a robot, should act or not. Social trust
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is an expression of a complex cognitive process, informed by the broader context of
cultural and social norms. Reasoning with trust and norms is necessary to justify and
explain robots’ decisions and draw inferences about accountability for failures, and
hence induce meaningful communication and relationships with autonomous robots.
There are dangers in acting based on inappropriate trust, for example, ‘overtrust’ in
the Tesla crash. We need to program robots so that they can not only be trusted, but
also so that they develop human-like trust in humans and other robots, and human-like
relationships.

While reliability for computerised systems has been successfully addressed through
formal verification techniques such as model checking, trust and ethics for robotics
has only recently emerged as an area of study, in response to the rapid technologi-
cal progress [10]. Elsewhere, for example in management, psychology, philosophy and
economics, trust has been studied widely. Digital trust concepts are also prominent in
e-commerce, where trust is based on reputation or credentials. However, the notion of
trust needed for human-robot partnerships is social trust, which has been little stud-
ied: it involves cognitive processes (i.e. mental attitude, goals, intentions, emotion) that
lead to a decision whether to trust or not, and is influenced through past experience and
preferences.

This paper gives an overview of recent progress towards a specification formalism
for expressing social trust concepts. The resulting logic, Probabilistic Rational Tempo-
ral Logic (PRTL*), is interpreted over stochastic multiagent systems (essentially con-
current stochastic games) extended with goals and intentions, where stochasticity arises
from randomness and environmental uncertainty. Trust is defined in terms of (subjec-
tive) probabilistic belief, which allows one to quantify the amount of trust as a belief-
weighted expectation, informally understood as a degree of trust. The logic can express,
for example, if A is a human rider of an autonomous car B, that “A has 99% trust in B’s
ability to safely reach the required destination”, and “B has 90% trust in A’s willing-
ness not to give unwise instructions”. The key novelty in the framework is the addition
of the cognitive dimension, in which (human or robotic) agents carry out their delib-
erations prior to decision-making; once the decision has been made, the agents act on
them, with the actions taking place in the usual temporal dimension. The logic, un-
der certain restrictions, admits a model checking procedure, which can be employed in
decision-making to evaluate and reason about trust in human-robot relationships, and
to assist in establishing accountability. We illustrate the main trust concepts by means
of an example, referring the reader to the details in [7].

2 An Illustrative Example

We illustrate the key features of social trust using a variant of a trust game called the
Parking Game due to Vincent Conitzer [3], see Figure 2. Trust games are often used
in economics, where it is assumed that players act on the basis of pure self-interest.
However, experiments with human subjects consistently show that humans behave dif-
ferently and are often willing to act on the assumption of the other player’s goodwill.

The Parking Game illustrates a situation where cars A and B (let us assume they are
autonomous) are waiting for a parking space, with car B behind A. Car A either waits
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or can move aside to let car B through, on the assumption that B is in a hurry and wants
to pass. Car B, however, can steal A’s parking space if it becomes available, or pass.
Though somewhat artificial, we will also allow an iterated version of this game, where
the cars return to compete for the parking space in the same order. The payoffs in this
game indicate that the best outcome for both A and B is for A to move aside and B pass.
As experience shows, this is a typical situation if the cars were driven by human drivers.
However, according to the standard game-theoretic solution the Nash equilibrium is for
A to wait, rather than move aside, to avoid the parking space being taken.

In [13] an alternative solution method is proposed that results in the equilibrium of
A moving aside and B passing. A similar game is considered in [8], where the com-
putation of the payoff is amended to include trust value. This paper puts forward a
different solution, where we explicitly model the evolution of trust starting from some
initial value, and update that (subjective) trust based on experience (that is, interactions
between agents), preferences and context.

(Car A, Car B) steal space pass
wait (3,0) (3,0)

move aside (0,3) (4,1)

Fig. 1. The ‘Parking Game’ due to Vincent Conitzer [3] (reproduced with permission).

3 The Model

We work with stochastic multiplayer games as models, to capture both external uncer-
tainty as well as internal probabilistic choices. We sometimes refer to players of the
game as agents.

Let D(X) denote the set of probability distributions on a set X. For simplicity, we
present a simplified variant of the model, and remark that partial observability and
strategic reasoning can be handled [7].

Definition 1. A stochastic multiplayer game (SMG) is a tuple M = (Ags, S , sinit, {ActA}A∈Ags,
T ), where Ags is a finite set of agents, S is a finite set of states, sinit ∈ S is an initial
state, ActA is a finite set of actions for agent A, and T : S × Act → D(S ) is a (partial)
transition probability function such that Act = ×A∈AgsActA and for each state s there
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exists a unique joint action a ∈ Act such that a (non-unique) state s′ is chosen with
probability T (s, a)(s′).

Let aA be agent A’s action in the joint action a ∈ Act. We let Act(s) = {a ∈ Act |
T (s, a) is defined} and ActA(s) = {aA | a ∈ Act(s)}. For technical reasons, we assume
that Act(s) , ∅ for all s ∈ S .

States S are global, and encode agents’ local states as well as environment states.
In each state s, agents independently (and possibly at random) choose a local action
(which may include the silent action ⊥), the environment performs an update, and the
system transitions to a state s′ satisfying T (s, a)(s′) > 0, where a is the joint action.

We define a finite, resp. infinite, path ρ in the usual way as a sequence of states
s0s1s2... such that T (si,−)(si+1) > 0 for all i ≥ 0, and denote the set of finite and infinite
paths of M starting in s, respectively, by FPathM

T (s) and IPathM
T (s), and sets of paths

starting from any state by FPathM
T and IPathM

T , and omit M if clear from context. For a
finite path ρ we write last(ρ) to denote the last state. We refer to paths induced from the
transition probability function T as the temporal dimension.

For an agent A we define an action strategy σA as a function σA : FPathM
T −→

D(ActA) such that for all aA ∈ ActA and finite path ρ it holds that σA(ρ)(aA) > 0
only if aA ∈ ActA(last(ρ)). An action strategy profile σ is a vector of action strategies
(σA)A∈Ags. Under a fixed σ, one can define a probability measure PrM,σ on IPathM

T (sinit)
in the standard way.

In order to reason about trust, we endow agents with a cognitive mechanism inspired
by the BDI framework (beliefs, desires and intentions) in the sense of [2]. We work with
probabilistic beliefs. A cognitive mechanism includes goals, intentions and subjective
preferences. For an agent A, the idea is that, while actions ActA represent A’s actions
in the physical space, goals and intentions represent the cognitive processes that lead to
decisions about which action to take. We thus distinguish two dimensions of transitions,
temporal (behavioural) and cognitive.

Definition 2. We define a cognitive mechanism as a tupleΩA = ({GoalA}A∈Ags, {IntA}A∈Ags,
{gpA,B}A,B∈Ags, {ipA,B}A,B∈Ags), where GoalA is a finite set of goals for agent A; IntA is a fi-
nite set of intentions for agent A; gpA,B : S −→ D(2GoalB ) assigns to each state, from A’s
point of view, a distribution over possible goal changes of B; and ipA,B : S −→ D(IntB)
assigns to each state, from A’s point of view, a distribution over possible intentional
changes of B.

An agent can have several goals, not necessarily consistent, but only a single inten-
tion. We think of goals as abstract attitudes, for example altruism or risk-taking, whereas
intentions are concretely implemented in our (simplified) setting as action strategies,
thus identifying the next (possibly random) action to be taken in the temporal dimen-
sion.

We refer to a stochastic multiplayer game endowed with a cognitive mechanism as
an autonomous stochastic multiagent system. We extend the set of temporal transitions
with cognitive transitions for agent A corresponding to a change of goal (respectively
intention) and the transition probability function T in the obvious way. We denote by
FPathM(s), IPathM(s), FPathM and IPathM the sets of paths formed by extending the sets
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FPathM
T (s), IPathM

T (s), FPathM
T and IPathM

T of temporal paths with paths that interleave
the cognitive and temporal transitions.

To obtain a probability measure over infinite paths IPathM(sinit), we need to re-
solve agents’ possible changes to goals or intentions. Similarly to action strategies,
we define cognitive reasoning strategies gA and iA, which are history dependent and
model subjective preferences of A. Formally, we define the cognitive goal strategy as
gA : FPath −→ D(2GoalA ), and the intentional strategy as iA : FPath −→ D(IntA). We
remark that such strategies arise from cognitive architectures, with the subjective view
induced by goal and intentional preference functions, gpA,B and ipA,B, which model
probabilistic prior knowledge of agent A about goals and intentions of B, informed by
prior experience (through observations) and aspects such as personal preferences and
social norms. For details see [7].

Example 1. For the Parking Game example, let us consider two possible goals for A,
altruism and selfishness. The intention corresponding to altruism is a strategy that al-
ways chooses to move aside, whereas for selfishness it is to choose wait. Another goal
is absent-mindedness, which is associated with a strategy that chooses between mov-
ing aside and waiting at random. A preference function for B could be based on past
observations that a Google car is more likely to move aside than, say, a Tesla car.

4 Probabilistic Rational Temporal Logic

We give an overview of the logic PRTL∗ that combines the probabilistic temporal logic
PCTL∗ with operators for reasoning about agents’ beliefs and cognitive trust. The trust
operators of the logic are inspired by [4], except we express trust in terms of prob-
abilistic belief, which probabilistically quantifies the degree of trust as a function of
subjective certainty, e.g., “I am 99% certain that the autonomous taxi service is trust-
worthy”, or “I trust the autonomous taxi service 99%”. The logic captures how the value
of 99% can be computed based on the agent’s past experience and (social, economic)
preferences.

Definition 3. The syntax of the language PRTL∗ is:

φ ::= p | ¬φ | φ ∨ φ | ∀ψ | P./qψ | GAψ | IAψ | CAψ |
B
./q
A ψ | CT

./q
A,Bψ | DT

./q
A,Bψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | © ψ | ψUψ | �ψ

where p is an atomic proposition, A, B ∈ Ags, ./∈ {<,≤, >,≥}, and q ∈ [0, 1].

In the above, φ is a PRTL∗ formula and ψ an LTL (path) formula. The operator ∀
is the path quantifier of CTL∗ and P./dψ is the probabilistic operator of PCTL [5, 1],
which denotes the probability of those future infinite paths that satisfy ψ, evaluated in
the temporal dimension. We omit the description of standard and derived (φ1 ∧ φ2, ^ψ
and ∃φ) operators, and just focus on the added operators.

The cognitive operators GAψ, IAψ and CAψ consider the task expressed as ψ and
respectively quantify, in the cognitive dimension, over possible changes of goals, pos-
sible intentions and available intentions. Thus, GAψ expresses that ψ holds in future
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regardless of agent A changing its goals. Similarly, IAψ states that ψ holds regardless
of A changing its (not necessarily available) intention, whereas CAψ quantifies over the
available intentions, and thus expresses that agent A can change its intention to achieve
ψ.
B
./q
A ψ is the belief operator, which states that agent A believes ψ with probability in

relation ./ with q. CT./qA,Bψ is the competence trust operator, meaning that agent A trusts
agent B with probability in relation ./ with q on its capability of completing the task ψ,
where capability is understood to be the existence of a valid intention (in IntB(s) for s
being the current state) to implement the task. DT./dA,Bψ is the disposition trust operator,
which expresses that agent A trusts agent B with probability in relation ./ with q on its
willingness to do the task ψ, where the state of willingness is interpreted as that the task
is unavoidable for all intentions in intentional strategy (i.e., iB(ρ) for ρ being the path
up to the current point in time).

Example 2. For the Parking Game example, the formula

DT≥0.7
A,B ¬stealA

where stealA is an atomic proposition, expresses that A’s trust in B’s willingness not to
steal a space is at least 70%, and

B≥0.8
A DT≥0.7

B,A moveA

states that A’s belief that B has at least 70% trust in its willingness to move is at least
80%, where moveA is an atomic proposition. Assuming that B has absent-mindedness
as its goal, and A has two goals, altruism and selfishness, with the corresponding inten-
tions, as in Example 1, then

GA¬DT
≥0.7
B,A moveA

states that, for all goal changes of A, B does not trust in A’s willingness to move with
probability at least 70%, where moveA is an atomic proposition.

We interpret formulas φ in an autonomous stochastic multiagent system M in a state
reached after executing a path ρ, in history-dependent fashion. Note that this path ρmay
have interleaved cognitive and temporal transitions. The cognitive operators quantify
over possible changes of goals and intentions in M in the cognitive dimension only,
reflecting the cognitive reasoning processes leading to a decision. The probabilistic op-
erator computes the probability of future paths satisfying ψ (i.e. completing the task
ψ) in M in the temporal dimension as for PCTL∗, reflecting the physical actions re-
sulting from the cognitive decision, and compares this to the probability bound q. The
belief operator corresponds to the belief-weighted expectation of future satisfaction of
ψ, which is subjective, as it is influenced by A’s prior knowledge about B encoded in the
preference function. The competence trust operator reduces to the computation of opti-
mal probability of satisfying ψ in M over possible changes of agent’s intention, which
is again belief-weighted and compared to the probability bound q. Dispositional trust,
on the other hand, computes the optimal probability of satisfying ψ in M over possible
states of agent’s willingness, weighted by the belief and compared to the probability
bound q.
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The logic PRTL∗ can also express strong and weak dependence trust notions of [4].
Strong dependence means that A depends on B to achieve ψ (i.e. ψ can be implemented
through intentional change of B), which cannot be achieved otherwise (expressed as a
belief in impossibility of ψ in future), and weak dependence that A is better off relying
on B compared to doing nothing (meaning intentional changes of B can bring about
better outcomes).

Example 3. If B is in a hurry, then

DT≥0.9
B,A ^leaveB ∧ ¬B

≥0.9
B ^leaveB

where leaveB is an atomic proposition, expresses that B’s leaving the car park strongly
depends on A’s willingness to cooperate.

Our framework encourages collaboration by allowing agents to update their trust
evaluation for other agents and to take into consideration each other’s trust when taking
decisions. Trust thus evolves dynamically based on agent interactions and the decision
to trust can be taken when a specific trust threshold is met. Therefore our notion of
social trust helps to explain cases where actual human behaviour is at variance with
standard economic and rationality theories.

Example 4. For the Parking Game example, we model the evolution of trust based on
interactions and prior knowledge, whereby A’s trust in B decreases if B steals the space,
and increases otherwise. A guards its decision whether to move aside by considering
the level of trust in B’s willingness not to steal, e.g. DT≥0.7

A,B ¬stealB.

The precise value of the threshold for trust is context-dependent. The trust value
higher than an appropriately calibrated level is known as ‘overtrust’, which can be ex-
pressed using our formalism, see [7].

5 Concluding Remarks

This paper has provided a brief overview of recent advances towards formalisation and
quantitative verification of cognitive trust for stochastic multiplayer games based on [7].
Although the full logic is undecidable, we have identified decidable sublogics with
reasonable complexity. As the next step we aim to implement the techniques as an
extension of the PRISM probabilistic model checker [9] and evaluate them on case
studies. To this end, we will define a Bellman operator and integrate with reasoning
based on cognitive architectures.

This paper constitutes the first step towards developing design methodologies for
capturing the social, trust-based decisions within human-robot partnerships. Pertinent
scientific questions arise in the richer and challenging field of ethics and morality. How
can we communicate intent in the context of human-robot interactions? How do we
incentivise robots to elicit an appropriate response? How do we ensure that robotic
assistants will not cause undue harm to others in order to satisfy the desires of their
charge? Or that a self-driving car is able to decide between continuing on a path that
will cause harm to other road-users, or executing an emergency stop which may harm
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passengers? These questions call for an in-depth analysis of the role of autonomous
robots in society from a variety of perspectives, including philosophical and ethical,
in addition to technology development, and for this analysis to inform policy makers,
educators and scientists.
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